Abstract
In this paper a search for the trajectory that minimizes the cost function is studied. In robotic studies the cost function can be defined as a function of time, tracking error or applied torque. In this study the cost function is selected as a function of applied torque, so the main aim is minimizing the energy consumption. For this purpose a simple robot manipulator is chosen, and its kinematic and dynamic models are derived by Denavit-Hartenberg convention and Euler-Lagrange method. Then two different trajectory polynomials are described, one is solved from boundary conditions without optimization and one is solved by optimization and the same boundary conditions. These two different trajectory polynomials and their cost functions values are compared. The effect and efficiency of optimization are examined.
Original language | English |
---|---|
Title of host publication | Proceedings - 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 60-65 |
Number of pages | 6 |
ISBN (Electronic) | 9781479982523 |
DOIs | |
Publication status | Published - 31 May 2016 |
Event | 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015 - Batu Ferringhi, Penang, Malaysia Duration: 27 Nov 2015 → 29 Nov 2015 |
Publication series
Name | Proceedings - 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015 |
---|
Conference
Conference | 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015 |
---|---|
Country/Territory | Malaysia |
City | Batu Ferringhi, Penang |
Period | 27/11/15 → 29/11/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- big bang-big crunch optimization algorithm
- global optimization
- robot dynamics
- trajectory planning