Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe

Christopher L. Hoy, Onur Ferhanoǧlu, Murat Yildirim, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, Adela Ben-Yakar

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

We present the optical design of a 9.6-mm diameter fiber-coupled probe for combined femtosecond laser microsurgery and nonlinear optical imaging. Towards enabling clinical use, we successfully reduced the dimensions of our earlier 18-mm microsurgery probe by half, while improving optical performance. We use analytical and computational models to optimize the miniaturized lens system for off-axis scanning aberrations. The optimization reveals that the optical system can be aberration-corrected using simple aspheric relay lenses to achieve diffraction-limited imaging resolution over a large field of view. Before moving forward with custom lenses, we have constructed the 9.6-mm probe using off-the-shelf spherical relay lenses and a 0.55 NA aspheric objective lens. In addition to reducing the diameter by nearly 50% and the total volume by 5 times, we also demonstrate improved lateral and axial resolutions of 1.27 μm and 13.5 μm, respectively, compared to 1.64 μm and 16.4 μm in our previous work. Using this probe, we can successfully image various tissue samples, such as rat tail tendon that required 2-3 × lower laser power than the current state-of-the-art. With further development, image-guided, femtosecond laser microsurgical probes such as this one can enable physicians to achieve the highest level of surgical precision anywhere inside the body.

Original languageEnglish
Pages (from-to)10536-10552
Number of pages17
JournalOptics Express
Volume19
Issue number11
DOIs
Publication statusPublished - 23 May 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe'. Together they form a unique fingerprint.

Cite this