Abstract
In this paper, an online adaptive decision fusion framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several sub-algorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular sub-algorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing orthogonal projections onto convex sets describing sub-algorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system is developed to evaluate the performance of the algorithm in handling the problems where data arrives sequentially. In this case, the oracle is the security guard of the forest lookout tower verifying the decision of the combined algorithm. Simulation results are presented.
Original language | English |
---|---|
Article number | 077202 |
Journal | Optical Engineering |
Volume | 50 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2011 |
Externally published | Yes |
Funding
This work was supported in part by the Scientific and Technical Research Council of Turkey, TUBITAK, with Grant Nos. 106G126 and 105E191, and in part by European Commission 7th Framework Program with Grant No. FP7-ENV-2009-1-244088-FIRESENSE.
Funders | Funder number |
---|---|
European Commission 7th Framework Program | FP7-ENV-2009-1-244088-FIRESENSE |
TUBITAK | 106G126, 105E191 |
Seventh Framework Programme | 244088 |
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu |
Keywords
- Active learning
- Decision fusion
- Online learning
- Projection onto convex sets
- Wild-fire detection