One dimensional network model for a reverse flow combustor

Gökhan Varol, Gürkan Sarikaya, Onur Tuncer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In this study, a one-dimensional empirical network code was developed for the preliminary design of a reverse flow combustor, which was intended to be used in a 1000 hp turbo-shaft helicopter engine. Network code is able to predict critical design features such as discharge coefficients at each hole set, mass flow rate distributions across the swirler, cooling devices and dilution holes, overall pressure drop across the combustor, liner wall and gas temperatures along the combustor and pollutant emissions at the exit of the combustor. By these means, many design alternatives can be scanned rapidly in early stages of design. Results are presented for a particular combustor geometry operating at idle, cruise and take-off conditions based on the cycle analysis of a turbo-shaft engine design which is intended for light duty helicopter missions. Calculated flow distributions and discharge coefficients were compared with isothermal numerical simulations and reasonably good agreement was achieved for the non-reacting case. On the other hand, liner temperatures for three operating conditions obtained from the network code were examined to see whether the liner temperatures were suitable for liner material and the obtained results showed that this particular design raises doubts when viewed from the predicted high liner temperatures.

Original languageEnglish
Title of host publication51st AIAA/SAE/ASEE Joint Propulsion Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103216
Publication statusPublished - 2015
Event51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015 - Orlando, United States
Duration: 27 Jul 201529 Jul 2015

Publication series

Name51st AIAA/SAE/ASEE Joint Propulsion Conference

Conference

Conference51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015
Country/TerritoryUnited States
CityOrlando
Period27/07/1529/07/15

Bibliographical note

Publisher Copyright:
© 2015, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

Fingerprint

Dive into the research topics of 'One dimensional network model for a reverse flow combustor'. Together they form a unique fingerprint.

Cite this