On the Shears of Univalent Harmonic Mappings

M. Aydogan, D. Bshouty*, A. Lyzzaik, F. M. Sakar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Let S be the standard class of normalized, univalent, analytic functions of the open unit disc D, and let SH0 be the class of sense-preserving, univalent, harmonic mappings f= h+ g¯ of D, where h(z)=z+∑n=2∞anznandg(z)=∑n=2∞bnzn.The purpose of this article is to disprove a conjecture by S. Ponnusamy and A. Sairam Kaliraj asserting that for every function f=h+g¯∈SH0, there exists a value θ∈ R such that the function h+ ei θg∈ S.

Original languageEnglish
Pages (from-to)2853-2862
Number of pages10
JournalComplex Analysis and Operator Theory
Volume13
Issue number6
DOIs
Publication statusPublished - 1 Sept 2019

Bibliographical note

Publisher Copyright:
© 2018, Springer Nature Switzerland AG.

Keywords

  • Convex domains in a direction
  • Harmonic mappings

Fingerprint

Dive into the research topics of 'On the Shears of Univalent Harmonic Mappings'. Together they form a unique fingerprint.

Cite this