Abstract
Dynamic stability of a free flight aerospace vehicle is investigated in this paper. Firstly, the slender rocket body is modeled as a classic uniform beam that subjected to constant end rocket thrust. The one-dimensional free-free beam under follower force is established for structural model to discover dynamic stability. Equations of motion of vehicle is derived by applying extended Hamilton's principle for non-conservative systems. Natural frequencies of rocket are determined and critical thrust is obtained by using finite element method. It is noted that, transverse vibrational modes differ by thrust value. Secondly, natural frequencies of non-homogeneous beam are discussed by considering that rocket has different types and number of stages. Numerical results for both cases are represented.
Original language | English |
---|---|
Title of host publication | RAST 2015 - Proceedings of 7th International Conference on Recent Advances in Space Technologies |
Editors | M. Fevzi Unal, Suleyman Basturk, Okyay Kaynak, Abdurrahman Hacioglu, Fuat Ince |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 467-470 |
Number of pages | 4 |
ISBN (Electronic) | 9781467377607 |
DOIs | |
Publication status | Published - 17 Aug 2015 |
Event | 7th International Conference on Recent Advances in Space Technologies, RAST 2015 - Istanbul, Turkey Duration: 16 Jun 2015 → 19 Jun 2015 |
Publication series
Name | RAST 2015 - Proceedings of 7th International Conference on Recent Advances in Space Technologies |
---|
Conference
Conference | 7th International Conference on Recent Advances in Space Technologies, RAST 2015 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 16/06/15 → 19/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- dynamic stability
- free vibration
- missile
- natural frequency
- rocket