TY - JOUR
T1 - On the conservation laws and traveling wave solutions to the BBM equation
AU - Yaşar, Emrullah
AU - Özer, Teoman
PY - 2010
Y1 - 2010
N2 - In this study the Benjamin-Bona-Mahony (BBM) equation, modelling long wave motion in nonlinear dispersive systems is discussed. Applying the new general theorem on nonlocal conservation laws [1], (N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., Vol. 333 (2007), pp. 311–328) and using the symmetries of the model equation conservation laws are discussed. Also, we construct reductions and solutions of the BBM equation using inverse variational and symmetry methods.
AB - In this study the Benjamin-Bona-Mahony (BBM) equation, modelling long wave motion in nonlinear dispersive systems is discussed. Applying the new general theorem on nonlocal conservation laws [1], (N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., Vol. 333 (2007), pp. 311–328) and using the symmetries of the model equation conservation laws are discussed. Also, we construct reductions and solutions of the BBM equation using inverse variational and symmetry methods.
UR - http://www.scopus.com/inward/record.url?scp=78651541687&partnerID=8YFLogxK
U2 - 10.1080/09720502.2010.10700679
DO - 10.1080/09720502.2010.10700679
M3 - Article
AN - SCOPUS:78651541687
SN - 0972-0502
VL - 13
SP - 77
EP - 86
JO - Journal of Interdisciplinary Mathematics
JF - Journal of Interdisciplinary Mathematics
IS - 1
ER -