Offline signature verification on real-world documents

Deniz Engin, Alperen Kantarci, Secil Arslan, Hazim Kemal Ekenel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

Research on offline signature verification has explored a large variety of methods on multiple signature datasets, which are collected under controlled conditions. However, these datasets may not fully reflect the characteristics of the signatures in some practical use cases. Real-world signatures extracted from the formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes. Moreover, they may have very high intra-class variations, where even genuine signatures resemble forgeries. In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures. Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs. We extensively evaluate different verification setups, fine-tuning strategies, and signature representation approaches to have a thorough analysis of the problem. Moreover, we conduct a human evaluation to show the challenging nature of the problem. We run experiments both on our custom dataset, as well as on the publicly available Tobacco-800 dataset. The experimental results validate the difficulty of offline signature verification on real-world documents. However, by employing the stamp cleaning process, we improve the signature verification performance significantly.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
PublisherIEEE Computer Society
Pages3518-3526
Number of pages9
ISBN (Electronic)9781728193601
DOIs
Publication statusPublished - Jun 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2020-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
Country/TerritoryUnited States
CityVirtual, Online
Period14/06/2019/06/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Offline signature verification on real-world documents'. Together they form a unique fingerprint.

Cite this