Abstract
Collision avoidance in the presence of dynamic obstacles in unknown environments is one of the most critical challenges for unmanned systems. In this paper, we present a method that identifies obstacles in terms of ellipsoids to estimate linear and angular obstacle velocities. Our proposed method is based on the idea of any object can be approximately expressed by ellipsoids. To achieve this, we propose a method based on variational Bayesian estimation of Gaussian mixture model, the Kyachiyan algorithm, and a refinement algorithm. Our proposed method does not require knowledge of the number of clusters and can operate in real-time, unlike existing optimization-based methods. In addition, we define an ellipsoid-based feature vector to match obstacles given two timely close point frames. Our method can be applied to any environment with static and dynamic obstacles, including ones with rotating obstacles. We compare our algorithm with other clustering methods and show that when coupled with a trajectory planner, the overall system can efficiently traverse unknown environments in the presence of dynamic obstacles.
Original language | English |
---|---|
Title of host publication | Proceedings - ICRA 2023 |
Subtitle of host publication | IEEE International Conference on Robotics and Automation |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1694-1700 |
Number of pages | 7 |
ISBN (Electronic) | 9798350323658 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom Duration: 29 May 2023 → 2 Jun 2023 |
Publication series
Name | Proceedings - IEEE International Conference on Robotics and Automation |
---|---|
Volume | 2023-May |
ISSN (Print) | 1050-4729 |
Conference
Conference | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 29/05/23 → 2/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.