Numerical study of behavior of textile-reinforced composite tubes under lateral compression

Didem Dönmez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This paper presents a detailed numerical investigation of behavior of cylindrical tube-shaped textile-reinforced cementitious composites (TRCCs) under monotonic lateral compression loading, and experimental verification. Effects of different thickness and number of layers, different textile materials on behavior of cylindrical tube-shaped TRCCs are investigated numerically. Numerical results are obtained by finite element (FE) simulation. The deformations and damages of TRCC tubes have also been investigated and analyzed with material models identified in the FE simulation. As results of numerical analysis, load-displacement curves of TRCC tubes, basic mechanism of their deformations, and the effects of textile material and the number of TRCC layers on the deformation behavior and load-carrying capacities of the TRCC tubes were presented. In this study, it was found that TRCC tubes could be an alternative to conventional pipes due to ductility, manufacturing feasibility according to their desired load-carrying capacity, energy absorption and ductility. Analytical solution based on an energy method was also presented to estimate the strength of different type of TRCC tubes. The results obtained from the FE simulation were compared with test data of monotonic lateral compression experiment for verification. Finally, parametric analysis was conducted using geometrical variables and the effects on tube strengths were examined.

Original languageEnglish
Pages (from-to)3738-3758
Number of pages21
JournalMechanics Based Design of Structures and Machines
Volume51
Issue number7
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2021 Taylor & Francis Group, LLC.

Keywords

  • fabric
  • failure modes
  • finite element modeling
  • Textile-reinforced cementitious composite
  • tube-shaped specimen

Fingerprint

Dive into the research topics of 'Numerical study of behavior of textile-reinforced composite tubes under lateral compression'. Together they form a unique fingerprint.

Cite this