Abstract
This study presents a flow model for a single screw extruder which has been investigated by means of analytical and numerical methods. Flow phenomena in single screw extruders has evoked attention of many researchers since non-Newtonian type of fluid transport by an extruder is utilized in many industrial applications. In this study we focused on the Newtonian-type of fluid transport by a single screw extruder since we aimed to generate an analytical model for the simplified Navier-Stokes equations under certain boundary conditions. The analytical model for a steady, laminar, isothermal and incompressible flow is derived using integral transform technique for a highly viscous flow where the convective acceleration terms are assumed to be negligible. Numerical investigation is conducted by an incompressible, laminar, finite volume based flow solver using a Volume of Fluid (VoF) approximation. An appropriate single-screw extruder model is used for the simulations. The novelty of the study relies on the usage of a simplified analytical model for a highly viscous flow and the comparison between the analytical and numerical results where the numerical results are obtained by a two-phase flow solver for the full Navier-Stokes equations using the complex extruder geometry.
Original language | English |
---|---|
Title of host publication | Fluids Engineering |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791850619 |
DOIs | |
Publication status | Published - 2016 |
Event | ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States Duration: 11 Nov 2016 → 17 Nov 2016 |
Publication series
Name | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) |
---|---|
Volume | 7 |
Conference
Conference | ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 |
---|---|
Country/Territory | United States |
City | Phoenix |
Period | 11/11/16 → 17/11/16 |
Bibliographical note
Publisher Copyright:Copyright © 2016 by ASME.