TY - JOUR
T1 - NSM analysis of time-dependent nonlinear buoyancy-driven double-diffusive radiative convection flow in non-Darcy geological porous media
AU - Bég, O. A.
AU - Zueco, J.
AU - Bég, T. A.
AU - Takhar, H. S.
AU - Kahya, E.
PY - 2009/1
Y1 - 2009/1
N2 - A network numerical simulator is developed and described to simulate the transient, nonlinear buoyancy-driven double diffusive heat and mass transfer of a viscous, incompressible, gray, absorbing-emitting fluid flowing past an impulsively started moving vertical plate adjacent to a non-Darcian geological porous regime. The governing boundary-layer equations are formulated in an (X *, Y *, t *) coordinate system with appropriate boundary conditions. An algebraic diffusion approximation is used to simplify the radiation heat transfer contribution. The non-dimensionalized transport equations are solved in an (X, Y, t) coordinate system using the network simulation model (NSM) and the computer code, Pspice. A detailed discussion of the network design is provided. The effects of Prandtl number, radiation-conduction parameter (Stark number), thermal Grashof number, species Grashof number, Schmidt number, Darcy number and Forchheimer number on the transient dimensionless velocities (U, V), non-dimensional temperature (T) and dimensionless concentration function (C) are illustrated graphically. Additionally, we have computed plots of U, V, T, C versus time and average Nusselt number and Sherwood number versus X, Y coordinate, for various thermophysical parameters. The model finds applications in geological contamination, geothermal energy systems and radioactive waste-repository near-field thermo-geofluid mechanics.
AB - A network numerical simulator is developed and described to simulate the transient, nonlinear buoyancy-driven double diffusive heat and mass transfer of a viscous, incompressible, gray, absorbing-emitting fluid flowing past an impulsively started moving vertical plate adjacent to a non-Darcian geological porous regime. The governing boundary-layer equations are formulated in an (X *, Y *, t *) coordinate system with appropriate boundary conditions. An algebraic diffusion approximation is used to simplify the radiation heat transfer contribution. The non-dimensionalized transport equations are solved in an (X, Y, t) coordinate system using the network simulation model (NSM) and the computer code, Pspice. A detailed discussion of the network design is provided. The effects of Prandtl number, radiation-conduction parameter (Stark number), thermal Grashof number, species Grashof number, Schmidt number, Darcy number and Forchheimer number on the transient dimensionless velocities (U, V), non-dimensional temperature (T) and dimensionless concentration function (C) are illustrated graphically. Additionally, we have computed plots of U, V, T, C versus time and average Nusselt number and Sherwood number versus X, Y coordinate, for various thermophysical parameters. The model finds applications in geological contamination, geothermal energy systems and radioactive waste-repository near-field thermo-geofluid mechanics.
UR - http://www.scopus.com/inward/record.url?scp=58149343973&partnerID=8YFLogxK
U2 - 10.1007/s00707-008-0018-6
DO - 10.1007/s00707-008-0018-6
M3 - Article
AN - SCOPUS:58149343973
SN - 0001-5970
VL - 202
SP - 181
EP - 204
JO - Acta Mechanica
JF - Acta Mechanica
IS - 1-4
ER -