Abstract
A method for preparation of novel fast photocurable polyethers is described. Thus, novel polyether, poly(3-methacryloxy propylene oxide) was obtained in low molecular weights (Mn: 1700 Da) by cationic ring opening polymerization of the epoxy group of glycidyl methacrylate (GMA) in presence of trimethylsilyl trifilate (TMSTF) as initiator. Copolymerization of the monomer with cyclohexene oxide (CHO) in the same reaction conditions yielded copolyethers with methacylate pendant groups. A series of copolymers with various GMA contents (10-100% mol/mol) were prepared using CHO as diluting comonomer. 1H NMR spectra showed that oxirane function of GMA is somewhat less reactive than CHO. Having methacylate pendant groups the resulting waxy polymers underwent rapid photocrosslinking to give glassy hard materials upon UV irradiation at 350 nm, in the presence of benzoin as photoinitiator. Photocuring abilities of the copolymers were investigated by real time FT-IR using in dimethoxyethane solutions (14.7% w/w). The results showed that, 60% double bonds disappear within 150-300 s by irradiation of diluted copolymer solutions with Xenon lamp (150 W).
Original language | English |
---|---|
Pages (from-to) | 106-112 |
Number of pages | 7 |
Journal | European Polymer Journal |
Volume | 44 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2008 |
Keywords
- Cationic polymerization
- Copolymerization
- Cyclohexene oxide
- Glycidyl methacrylate
- Photocuring