TY - GEN
T1 - Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels
AU - Yilmaz, Ferkan
AU - Alouini, Mohamed Slim
PY - 2012
Y1 - 2012
N2 - The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework for the computation of the higher-order statistics of the channel capacity over generalized fading channels. As such, this novel framework for the higher-order statistics results in simple, closed-form expressions which are shown to be asymptotically tight bounds in the high signal-to-noise ratio (SNR) regime of a variety of fading environment. In addition, it reveals the existence of differences (i.e., constant capacity gaps in log-domain) among different fading environments. By asymptotically tight bound we mean that the high SNR limit of the difference between the actual higher-order statistics of the channel capacity and its asymptotic bound (i.e., lower bound) tends to zero. The mathematical formalism is illustrated with some selected numerical examples that validate the correctness of our newly derived results.
AB - The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework for the computation of the higher-order statistics of the channel capacity over generalized fading channels. As such, this novel framework for the higher-order statistics results in simple, closed-form expressions which are shown to be asymptotically tight bounds in the high signal-to-noise ratio (SNR) regime of a variety of fading environment. In addition, it reveals the existence of differences (i.e., constant capacity gaps in log-domain) among different fading environments. By asymptotically tight bound we mean that the high SNR limit of the difference between the actual higher-order statistics of the channel capacity and its asymptotic bound (i.e., lower bound) tends to zero. The mathematical formalism is illustrated with some selected numerical examples that validate the correctness of our newly derived results.
KW - ergodic capacity
KW - generalized fading channels
KW - higher-order amount-of-fading
KW - higher-order ergodic capacity
KW - Higher-order statistics
UR - http://www.scopus.com/inward/record.url?scp=84868015028&partnerID=8YFLogxK
U2 - 10.1109/SPAWC.2012.6292934
DO - 10.1109/SPAWC.2012.6292934
M3 - Conference contribution
AN - SCOPUS:84868015028
SN - 9781467309714
T3 - IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
SP - 389
EP - 393
BT - 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2012
T2 - 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2012
Y2 - 17 June 2012 through 20 June 2012
ER -