TY - JOUR
T1 - Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection
AU - Koulivand, Habib
AU - Shahbazi, Afsaneh
AU - Vatanpour, Vahid
AU - Rahmandoost, Moones
N1 - Publisher Copyright:
© 2020
PY - 2020/6
Y1 - 2020/6
N2 - Novel antifouling and antibacterial nanofiltration membranes were prepared by addition of nitrogen-doped carbon dots (NCDs) to the polyethersulfone (PES). The antibacterial NCDs were successfully fabricated using hydrothermal technique and then were characterized using photoluminescence (PL) spectra, FTIR, XRD, and dynamic light scattering (DLS). The resulted nanoparticles were introduced to PES through the phase separation method. The effect of adding NCDs into the PES membrane, as a novel nanofiller was studied in terms of surface and cross-sectional morphology, hydrophilicity, porosity, permeation, fouling resistance, antibacterial properties, and nanofiltration performance. All the NCD-blended membranes exhibited better performance compared to the bare PES. The water flux was significantly increased from 16.5 kg/m2h for the bare PES to 44.6 kg/m2h for the 0.50 wt% NCD-blended membrane. The 0.50 wt% of NCD-blended PES membrane also showed the best antifouling properties, with a flux recovery ratio (FRR) of 73.1%. The retention sequence of the salts was Na2SO4 (80.3%) > MgSO4 (63.5%) > NaCl (20.7%), showing the common behavior of the negative charge nanofiltration membranes. The antibacterial assessment showed a zone of inhibition for both Gram-negative and Gram-positive bacteria in disks membranes containing higher than 0.10 wt% of NCD concentrations. The results offer NCD-blended membranes as a high potential hydrophilic and antibacterial nanofillers.
AB - Novel antifouling and antibacterial nanofiltration membranes were prepared by addition of nitrogen-doped carbon dots (NCDs) to the polyethersulfone (PES). The antibacterial NCDs were successfully fabricated using hydrothermal technique and then were characterized using photoluminescence (PL) spectra, FTIR, XRD, and dynamic light scattering (DLS). The resulted nanoparticles were introduced to PES through the phase separation method. The effect of adding NCDs into the PES membrane, as a novel nanofiller was studied in terms of surface and cross-sectional morphology, hydrophilicity, porosity, permeation, fouling resistance, antibacterial properties, and nanofiltration performance. All the NCD-blended membranes exhibited better performance compared to the bare PES. The water flux was significantly increased from 16.5 kg/m2h for the bare PES to 44.6 kg/m2h for the 0.50 wt% NCD-blended membrane. The 0.50 wt% of NCD-blended PES membrane also showed the best antifouling properties, with a flux recovery ratio (FRR) of 73.1%. The retention sequence of the salts was Na2SO4 (80.3%) > MgSO4 (63.5%) > NaCl (20.7%), showing the common behavior of the negative charge nanofiltration membranes. The antibacterial assessment showed a zone of inhibition for both Gram-negative and Gram-positive bacteria in disks membranes containing higher than 0.10 wt% of NCD concentrations. The results offer NCD-blended membranes as a high potential hydrophilic and antibacterial nanofillers.
KW - Antibacterial
KW - Antifouling
KW - Carbon dots
KW - Nanofiltration
KW - Salt rejection
UR - http://www.scopus.com/inward/record.url?scp=85081129176&partnerID=8YFLogxK
U2 - 10.1016/j.msec.2020.110787
DO - 10.1016/j.msec.2020.110787
M3 - Article
C2 - 32279812
AN - SCOPUS:85081129176
SN - 0928-4931
VL - 111
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
M1 - 110787
ER -