Nanocellulose in polyvinylidene fluoride (PVDF) membranes: Assessing reinforcement impact and modelling techniques

Seren Acarer-Arat*, Mertol Tüfekci*, İnci Pir, Neşe Tüfekci

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, polyvinylidene fluoride (PVDF)-based nanocomposite membranes reinforced with cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) were fabricated using the phase inversion method. The effects of 0.5 wt% and 1 wt% CNC and CNF on structural, mechanical, and filtration properties were examined. Membranes reinforced with 1 wt% CNF exhibited the highest distilled water flux, increasing from 445.91 to 476.17 L/m².h, and showed improved antifouling ability and higher total organic carbon (TOC) removal compared to unreinforced membranes. Mechanical properties were modelled using five numerical methods, with finite element and Mori-Tanaka models showing the best agreement with experimental data. Modelling results indicated that finite element and Mori-Tanaka methods were the most accurate in predicting the modulus of elasticity. The reinforcement significantly enhanced the membranes' performance in terms of flux recovery, fouling resistance, and mechanical strength, making this a novel interdisciplinary investigation of nanocomposite membranes focusing on both mechanical and filtration capabilities.

Original languageEnglish
Article number114749
JournalJournal of Environmental Chemical Engineering
Volume12
Issue number6
DOIs
Publication statusPublished - Dec 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors

Keywords

  • Composite membranes
  • Mechanical and environmental performance
  • Polymeric membranes
  • Ultrafiltration
  • Water treatment

Fingerprint

Dive into the research topics of 'Nanocellulose in polyvinylidene fluoride (PVDF) membranes: Assessing reinforcement impact and modelling techniques'. Together they form a unique fingerprint.

Cite this