Abstract
The vestibular system (VS) is a sensory system that has a vital function in human life by serving to maintain balance. In this study, multifractal detrended fluctuation analysis (MFDFA) is applied to insole pressure sensor data collected from subjects in order to extract features to identify diseases related to VS dysfunction. We use the multifractal spectrum width as the feature to distinguish between healthy and diseased people. It is observed that multifractal behavior is more dominant and thus the spectrum is wider for healthy subjects, where we explain the reason as the long-range correlations of the small and large fluctuations of the time series for this group. We directly process the instantaneous pressure values to extract features in contrast to studies in the literature where gait analysis is based on investigation of gait dynamics (stride time, stance time, etc.) requiring long walking time. Thus, as the main innovation of this work, we detrend the data to give meaningful information even for a relatively short walk. Extracted feature set was input to fundamental classification algorithms where the Support-Vector-Machine (SVM) performed best with an average accuracy of 98.2% for the binary classification as healthy or suffering. This study is a substantial part of a big project where we finally aim to identify the specific VS disease that causes balance disorder and also determine the stage of the disease, if any. Within this scope, the achieved performance gives high motivation to work more deeply on the issue.
Original language | English |
---|---|
Pages (from-to) | 637-648 |
Number of pages | 12 |
Journal | Biomedical Engineering Letters |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - Nov 2023 |
Bibliographical note
Publisher Copyright:© 2023, Korean Society of Medical and Biological Engineering.
Funding
This study is a substantial part of a project titled “Development of Dynamic Vestibular System Analysis Algorithm and Balance Detector Design” supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) (Project no: 115E258).
Funders | Funder number |
---|---|
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | 115E258 |
Keywords
- Classification
- Detrending
- Long-range correlations
- Multi-fractality
- Non-stationary time series
- Vestibular disorders