Abstract
Abstract: Intracerebral hemorrhage is a life-threatening condition where conventional imaging modalities such as CT and MRI are indispensable in diagnosing. Nevertheless, monitoring the evolution of intracerebral hemorrhage still poses a technological challenge. We consider continuous monitoring of intracerebral hemorrhage in this context and present a differential microwave imaging scheme based on a linearized inverse scattering. Our aim is to reconstruct non-anatomical maps that reveal the volumetric evolution of hemorrhage by using the differences between consecutive electric field measurements. This approach can potentially allow the monitoring of intracerebral hemorrhage in a real-time and cost-effective manner. Here, we devise an indicator function, which reveals the position, volumetric growth, and shrinkage of hemorrhage. Later, the method is numerically tested via a 3D anthropomorphic dielectric head model. Through several simulations performed for different locations of intracerebral hemorrhage, the indicator function-based technique is demonstrated to be capable of detecting the changes accurately. Finally, the robustness under noisy conditions is analyzed to assess the feasibility of the method. This analysis suggests that the method can be used to monitor the evolution of intracerebral hemorrhage in real-world scenarios. Graphical abstract: [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 33-43 |
Number of pages | 11 |
Journal | Medical and Biological Engineering and Computing |
Volume | 61 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2023 |
Bibliographical note
Publisher Copyright:© 2022, International Federation for Medical and Biological Engineering.
Keywords
- Intracerebral hemorrhage
- Inverse scattering
- Microwave imaging
Fingerprint
Dive into the research topics of 'Monitoring of intracerebral hemorrhage with a linear microwave imaging algorithm'. Together they form a unique fingerprint.Press/Media
-
Istanbul Technical University Reports Findings in Cerebral Hemorrhage (Monitoring of intracerebral hemorrhage with a linear microwave imaging algorithm)
Akinci, M. N., Akduman, I., Cayoren, M. & Doğu, S.
14/11/22
1 item of Media coverage
Press/Media