Modulated periodic wavetrains in the spherical Gardner equation

Gunay Aslanova*, Ali Demirci, Semra Ahmetolan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The spherical Gardner (sG) equation is derived by reducing the (3+1)-dimensional Gardner–Kadomtsev–Petviashvili (Gardner–KP) equation with a similarity reduction. As a special case, the step-like initial condition is considered along a paraboloid front. By applying a multiple-scale expansion, a system of first order partial differential equations for the slowly varying parameters of a periodic wavetrain is obtained. The corresponding modulation system is transformed into a simpler form with the help of Riemann type variables. This basic form is important to investigate the dispersive shock wave (DSW) phenomena in the sG equation. DSW solution is also compared with the numerical solution of the sG equation and good agreement is found between these solutions.

Original languageEnglish
Article number102844
JournalWave Motion
Publication statusPublished - Feb 2022

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.


  • Dispersive shock waves
  • Gardner–KP equation
  • Whitham modulation theory


Dive into the research topics of 'Modulated periodic wavetrains in the spherical Gardner equation'. Together they form a unique fingerprint.

Cite this