Modification of immobilized titanium dioxide nanostructures by argon plasma for photocatalytic removal of organic dyes

Hamid Reza Khaledian, Pezhman Zolfaghari, Vahide Elhami, Mostafa Aghbolaghy, Sirous Khorram, Afzal Karimi*, Alireza Khataee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

The aim of this study was to modify surface properties of immobilized rutile TiO2 using Argon cold plasma treatment and to evaluate the performance of the catalyst in photocatalytic elimination of synthetic dyes in UV/TiO2/H2O2 process. The surface-modified TiO2 was characterized by XRD, EDX, SEM, UV-DRS and XPS analyses. Response surface methodology was adopted to achieve high catalyst efficiency by evaluating the effect of two main independent cold plasma treatment parameters (exposure time and pressure) on surface modification of the catalyst. The increase of the plasma operation pressure led to higher decolorization percentage, while the increase of plasma exposure time decreased the decolorization efficiency. RSM methodology predicted optimum plasma treatment conditions to be 0.78 Torr and 21 min of exposure time, which resulted in decolorization of 10 mg/L solution of the malachite green solution by 94.94% in 30 min. The plasma treatment decreased the oxygen to titanium ratio and caused oxygen vacancy on the surface of the catalyst, resulting in the superior performance of the plasma-treated catalyst. Pseudo first-order kinetic rate constant for the plasma-treated catalyst was 4.28 and 2.03 times higher than the rate constant for the non-treated photocatalyst in decolorization of aqueous solutions of malachite green and crystal violet, respectively.

Original languageEnglish
Article number383
JournalMolecules
Volume24
Issue number3
DOIs
Publication statusPublished - 1 Jan 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 by the authors.

Keywords

  • Cold plasma
  • Nano-catalyst
  • Photocatalysis
  • Surface modification
  • TiO

Fingerprint

Dive into the research topics of 'Modification of immobilized titanium dioxide nanostructures by argon plasma for photocatalytic removal of organic dyes'. Together they form a unique fingerprint.

Cite this