Modelling Vortexlets Formation of Schardin’s Problem via a High Order Euler Solver

Ladin Nil Kofoglu, Gregorio Gerardo Spinelli, Bayram Celik

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The present study investigates the shock diffraction problem over a triangular wedge for Mach number range of 1-2. For this purpose, we use a two-dimensional high-order in-house Euler solver that is based on a family of AUSM-flux splitting schemes coupled with a CENO scheme. The solver allows us to resolve the regions that contain discontinuities by means of a block-based adaptive mesh refinement algorithm that is based on smoothness indicator. By using the advantages of the solver, mesh dependency study was conducted at M=1.5 for refinement levels of 4, 5, and 6. From the results we assert that even though the general physics of the flow can be accurately resolved with all refinement levels, at least level 6 is required to capture the vortexlet formation appropriately.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2023
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106996
DOIs
Publication statusPublished - 2023
EventAIAA SciTech Forum and Exposition, 2023 - Orlando, United States
Duration: 23 Jan 202327 Jan 2023

Publication series

NameAIAA SciTech Forum and Exposition, 2023

Conference

ConferenceAIAA SciTech Forum and Exposition, 2023
Country/TerritoryUnited States
CityOrlando
Period23/01/2327/01/23

Bibliographical note

Publisher Copyright:
© 2023, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

Fingerprint

Dive into the research topics of 'Modelling Vortexlets Formation of Schardin’s Problem via a High Order Euler Solver'. Together they form a unique fingerprint.

Cite this