Abstract
Missing rainfall data are a major limitation for distributed hydrological modeling and climate studies. Practitioners need reliable approaches that can be employed on a daily basis, often with too limited data in space to feed complex predictive models. In this study we compare different automatic approaches for missing data imputation, including geostatistical interpolation and pattern-based estimation algorithms. We introduce two pattern-based approaches based on the analysis of historical data patterns: (i) an iterative version of K-nearest neighbor (IKNN) and (ii) a new algorithm called vector sampling (VS) that combines concepts of multiple-point statistics and resampling. Both algorithms can draw estimations from variably incomplete data patterns, allowing the target dataset to be at the same time the training dataset. Tested on five case studies from Denmark, Australia, and Switzerland, the algorithms show a different performance that seems to be related to the terrain type: on flat terrains with spatially homogeneous rain events, geostatistical interpolation tends to minimize the average error, while in mountainous regions with nonstationary rainfall statistics, data mining can recover better the rainfall patterns. The VS algorithm, requiring minimal parameterization, turns out to be a convenient option for routine application on complex and poorly gauged terrains.
Original language | English |
---|---|
Pages (from-to) | 2325-2341 |
Number of pages | 17 |
Journal | Journal of Hydrometeorology |
Volume | 21 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2020 |
Bibliographical note
Publisher Copyright:© 2020 American Meteorological Society.
Funding
Acknowledgments. This research has been funded by the Swiss National Science Foundation (project P2NEP2_162040) and hosted by the SPACE project (http://space.geus.dk) and the GAIA Lab (http://wp.unil.ch/ gaia). The data used are available from the HOBE project (http://www.hobe.dk). We acknowledge the financial support for the SPACE project by the Villum Foundation (http://villumfonden.dk/) through their Young Investigator Programme (Grant VKR023443). The third author (MCD) is supported by the National Center for High Performance Computing of Turkey (UHeM) under Grant 1007292019.
Funders | Funder number |
---|---|
GAIA Lab | |
National Center for High Performance Computing of Turkey | |
Villum Fonden | VKR023443 |
Ulusal Yüksek Başarımlı Hesaplama Merkezi, Istanbul Teknik Üniversitesi | 1007292019 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | P2NEP2_162040 |
Keywords
- Hydrologic models
- Hydrometeorology
- Numerical analysis/modeling
- Pattern detection
- Statistical techniques