TY - GEN
T1 - Micro position control of a designed 3-PRR compliant mechanism using experimental models
AU - Acer, Merve
AU - Sabanovic, Asif
PY - 2013
Y1 - 2013
N2 - A new compliant stage based on 3-PRR kinematic structure is designed to be used as a planar micro positioner. The mechanism is actuated by using piezoelectric actuators and center position of the stage is measured using a dual laser position sensor. It's seen that manufactured mechanism has unpredictable motion errors due to manufacturing and assembly faults. Thus, sliding mode control with disturbance observer is chosen to be implemented as position control in x-y axes of the center of the mechanism. Instead of piezoelectric actuator models, experimental models are extracted for each actuation direction in order to be used as nominal plants for the disturbance observer. The position control results are compared with the previous position control using linear piezoelectric actuator models and it's seen that the implemented control methodology is better in terms of errors in x and y axes. Besides, the position errors are lowered down to ±0.06 microns, which is the accuracy of the dual laser position sensor.
AB - A new compliant stage based on 3-PRR kinematic structure is designed to be used as a planar micro positioner. The mechanism is actuated by using piezoelectric actuators and center position of the stage is measured using a dual laser position sensor. It's seen that manufactured mechanism has unpredictable motion errors due to manufacturing and assembly faults. Thus, sliding mode control with disturbance observer is chosen to be implemented as position control in x-y axes of the center of the mechanism. Instead of piezoelectric actuator models, experimental models are extracted for each actuation direction in order to be used as nominal plants for the disturbance observer. The position control results are compared with the previous position control using linear piezoelectric actuator models and it's seen that the implemented control methodology is better in terms of errors in x and y axes. Besides, the position errors are lowered down to ±0.06 microns, which is the accuracy of the dual laser position sensor.
KW - compliant mechanism
KW - micro motion mechanisms
KW - observer
KW - piezoelectric actuator
KW - sliding mode control
UR - http://www.scopus.com/inward/record.url?scp=84886575584&partnerID=8YFLogxK
U2 - 10.1109/ASCC.2013.6606259
DO - 10.1109/ASCC.2013.6606259
M3 - Conference contribution
AN - SCOPUS:84886575584
SN - 9781467357692
T3 - 2013 9th Asian Control Conference, ASCC 2013
BT - 2013 9th Asian Control Conference, ASCC 2013
T2 - 2013 9th Asian Control Conference, ASCC 2013
Y2 - 23 June 2013 through 26 June 2013
ER -