Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes

Sadiye Velioğlu, Hüseyin Enis Karahan, Kunli Goh, Tae Hyun Bae, Yuan Chen*, Jia Wei Chew*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Carbon nanotubes (CNTs) with hydrophobic and atomically smooth inner channels are promising for building ultrahigh-flux nanofluidic platforms for energy harvesting, health monitoring, and water purification. Conventional wisdom is that nanoconfinement effects determine water transport in CNTs. Here, using full-atomistic molecular dynamics simulations, it is shown that water transport behavior in CNTs strongly correlates with the electronic properties of single-walled CNTs (metallic (met) vs semiconducting (s/c)), which is as dominant as the effect of nanoconfinement. Three pairs of CNTs (i.e., (8,8)met, 10.85 Å vs (9,7)s/c, 10.88 Å; (9,8)s/c, 11.53 Å vs (10,7)met, 11.59 Å; and (9,9)met, 12.20 Å vs (10,8)s/c, 12.23 Å) are used to investigate the roles of diameter and metallicity. Specifically, the (9,8)s/c can restrict the hydrogen-bonding-mediated structuring of water and give the highest reduction in carbon–water interaction energy, providing an extraordinarily high water flux, around 250 times that of the commercial reverse osmosis membranes and approximately fourfold higher than the flux of the state-of-the-art boron nitrate nanotubes. Further, the high performance of (9,8)s/c is also reproducible when embedded in lipid bilayers as synthetic high-water flux porins. Given the increasing availability of high-purity CNTs, these findings provide valuable guides for realizing novel CNT-enhanced nanofluidic systems.

Original languageEnglish
Article number1907575
JournalSmall
Volume16
Issue number25
DOIs
Publication statusPublished - 1 Jun 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • chirality
  • metallicity
  • molecular dynamics
  • nanofluidics
  • water transport

Fingerprint

Dive into the research topics of 'Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this