Meta-learning for Medical Image Segmentation Uncertainty Quantification

Sabri Can Cetindag*, Mert Yergin, Deniz Alis, Ilkay Oksuz

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Inter-rater and intra-rater variability is a major challenge in medical image segmentation. Inconsistencies of manual segmentations between different experts can challenge development of deterministic automated medical image analysis tools. QUBIQ 2021 is a challenge to enable the successful development of automated machine learning tools, when there are inconsistencies between the labels of different annotators. In this paper, we propose to use meta-learning for quantifying uncertainty in biomedical image quantification. We first train a segmentation network for each expert separately with extensive data augmentation using the nnUnet framework. Then, a meta learner model based on a conventional U-net architecture is trained using the average of all annotators as ground truth, and output of all models that have been trained for each radiologist as input. We compared our results of meta-learning with ensemble methods for various image segmentation tasks and illustrate improved performance.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages578-584
Number of pages7
ISBN (Print)9783031090011
DOIs
Publication statusPublished - 2022
Event7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sept 202127 Sept 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12963 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/2127/09/21

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Medical image segmentation
  • Meta-learning
  • Uncertainty quantification

Fingerprint

Dive into the research topics of 'Meta-learning for Medical Image Segmentation Uncertainty Quantification'. Together they form a unique fingerprint.

Cite this