TY - JOUR
T1 - Mechanical tuning of three-dimensional graphene network materials through geometric hybridization
AU - Yilmaz, Osman Furkan
AU - Kirca, Mesut
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/31
Y1 - 2025/1/31
N2 - Three-dimensional graphene network (3DGN) material is a class of nanomaterials distinguished by their unique mechanical, electronic, and thermal properties, presenting an exciting platform in nanotechnology and materials science. With these properties, 3DGNs emerges as a promising candidate for diverse applications spanning electronics, catalysis, biomedicine, and beyond. The mechanical performance of 3DGN materials is significantly affected by their topology and geometry, emphasizing the significance of controlled geometrical modifications in tailoring the mechanical properties. In this study, our objective is to systematically investigate the effect of controlled geometrical modifications on the mechanical properties of 3DGN nanomaterials and offer the possibility of fine-tuning their mechanical properties. To this end, we performed numerical tensile tests via molecular dynamics (MD) simulations on a unique set of 720 3DGN specimens constructed by combining different triply periodic minimal surface (TPMS) geometries using a geometric hybridization technique. Our findings demonstrate that geometric hybridization can yield improvements in key mechanical properties such as Young's modulus, ultimate strength and toughness compared to non-hybrid models. We also elucidated the underlying mechanisms governing the relationship between mechanical properties and hybridization and geometrical parameters. This study significantly advances the development of next-generation 3DGN nanomaterials across various fields by demonstrating the precise tunability of their mechanical properties through geometric design.
AB - Three-dimensional graphene network (3DGN) material is a class of nanomaterials distinguished by their unique mechanical, electronic, and thermal properties, presenting an exciting platform in nanotechnology and materials science. With these properties, 3DGNs emerges as a promising candidate for diverse applications spanning electronics, catalysis, biomedicine, and beyond. The mechanical performance of 3DGN materials is significantly affected by their topology and geometry, emphasizing the significance of controlled geometrical modifications in tailoring the mechanical properties. In this study, our objective is to systematically investigate the effect of controlled geometrical modifications on the mechanical properties of 3DGN nanomaterials and offer the possibility of fine-tuning their mechanical properties. To this end, we performed numerical tensile tests via molecular dynamics (MD) simulations on a unique set of 720 3DGN specimens constructed by combining different triply periodic minimal surface (TPMS) geometries using a geometric hybridization technique. Our findings demonstrate that geometric hybridization can yield improvements in key mechanical properties such as Young's modulus, ultimate strength and toughness compared to non-hybrid models. We also elucidated the underlying mechanisms governing the relationship between mechanical properties and hybridization and geometrical parameters. This study significantly advances the development of next-generation 3DGN nanomaterials across various fields by demonstrating the precise tunability of their mechanical properties through geometric design.
UR - http://www.scopus.com/inward/record.url?scp=85209255682&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2024.113544
DO - 10.1016/j.commatsci.2024.113544
M3 - Article
AN - SCOPUS:85209255682
SN - 0927-0256
VL - 247
JO - Computational Materials Science
JF - Computational Materials Science
M1 - 113544
ER -