Abstract
Side-channel attacks use indirect information about cryptographic operations from the targeted system. This makes the attacks highly effective on the system. In this paper, we explore the time-based cache attack that uses the time feature and cache information as secondary channel information. We selected AES algorithm to accomplish the time-based side channel attack. This time-based side channel attack targets the secret key in the last cycle of AES algorithm. We use machine learning models to extract information from secondary channels to determine vulnerabilities of the system. We use tree models on the time profiles created during the attack then we evaluated the most significant characteristics of the attack. Since Decision Tree, Random Forest, Gradient Boosting Model, and Extreme Gradient Boosting algorithms are very sensitive to processing tasks, we selected them as tree algorithms. Analysis results show that 'cycle on average' information helps to predict the time-driven cache attacks. Moreover, Extreme Gradient Boosting algorithm provides better results.
Original language | English |
---|---|
Title of host publication | UBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 564-568 |
Number of pages | 5 |
ISBN (Electronic) | 9781728139647 |
DOIs | |
Publication status | Published - Sept 2019 |
Event | 4th International Conference on Computer Science and Engineering, UBMK 2019 - Samsun, Turkey Duration: 11 Sept 2019 → 15 Sept 2019 |
Publication series
Name | UBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering |
---|
Conference
Conference | 4th International Conference on Computer Science and Engineering, UBMK 2019 |
---|---|
Country/Territory | Turkey |
City | Samsun |
Period | 11/09/19 → 15/09/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Funding
ACKNOWLEDGMENT This work is supported by Istanbul Technical University under the BAP project, number MAB-2017-40642.
Funders | Funder number |
---|---|
Istanbul Teknik Üniversitesi | MAB-2017-40642 |
Keywords
- machine learning
- security
- time-driven cache attacks