Machine Learning-Based Error Correction Codes and Communication Protocols for Power Line Communication: An Overview

Tahir Cetin Akinci*, Gokhan Erdemir, A. Tarik Zengin, Serhat Seker, Abdoulkader Ibrahim Idriss

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study endeavors to investigate the effectiveness of machine learning-based methodologies in enhancing the performance and reliability of Power Line Communication (PLC) systems. PLC systems constitute a critical component within the domains of energy management, monitoring, and automation. The fundamental objective herein is to contribute significantly to the scholarly discourse by conducting a comprehensive review encompassing research investigations and practical applications documented in the extant literature. The primary motivation underpinning this research is predicated upon the necessity for a meticulous evaluation of machine learning techniques that hold the potential to enhance the efficacy and stability of PLC systems. The deployment of these techniques bears the promise of engendering heightened levels of efficiency across the spectrum of energy management, communication, and automation systems. Within this scholarly quest, the study posits a hypothesis: Machine learning-based methodologies possess the capacity to effect marked improvements in the performance and reliability of PLC systems. Methodological scrutiny is executed through a comprehensive evaluation of diverse machine learning techniques, including, but not limited to, deep learning, support vector machines, and random forests, facilitated by a series of empirical experiments and simulations. Empirical findings resoundingly corroborate the proposition, substantiating a significant enhancement in the operational performance of PLC systems when these machine learning methods are judiciously employed. In summation, this study assumes the role of a catalyst in exploring latent, untapped potential inherent within machine learning-based methodologies, customarily calibrated to resonate within the intricate matrix of PLC systems. The zenith of this rigorous investigation stands poised to illuminate the path toward transformative advancements in the domains of energy management, communication, monitoring, and automation systems. The findings contribute significantly to the academic discourse, offering a compass for future research inquiries and practical applications within this burgeoning and dynamic field.

Original languageEnglish
Pages (from-to)124760-124781
Number of pages22
JournalIEEE Access
Volume11
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2013 IEEE.

Keywords

  • Power line communication
  • communication protocols
  • error correction codes
  • machine learning
  • power networks
  • transmission control protocols

Fingerprint

Dive into the research topics of 'Machine Learning-Based Error Correction Codes and Communication Protocols for Power Line Communication: An Overview'. Together they form a unique fingerprint.

Cite this