TY - JOUR
T1 - Long term study on the fate and environmental risks of favipiravir in wastewater treatment plants and comparison with COVID-19 cases
AU - Eryildiz-Yesir, Bahriye
AU - Polat, Ece
AU - Altınbaş, Mahmut
AU - Gul, Bahar Yavuzturk
AU - Koyuncu, Ismail
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - In recent years especially during COVID-19, the increased usage of antiviral drugs has led to increased interest in monitoring their presence in wastewater worldwide. In this study, it was examined the occurrence, fate and environmental risks of favipiravir which is used for COVID-19 treatment in two wastewater treatment plants (WWTPs) with different treatment processes in Istanbul, Turkey. Favipiravir was measured in WWTPs influent samples, effluent samples and sludge samples with maximum concentrations of 97 μg/L, 64.11 μg/L and 182.47 μg/g, respectively. Favipiravir had removal efficiency below 55 % for both WWTPs. Mass balance analysis showed that favipiravir removal in WWTPs mainly attributed to biodegradation/biotransformation. Statistical analysis revealed a significant correlation between favipiravir concentration and COVID-19 incidence in Istanbul. The microbial distribution analysis indicated that comparison of collected COVID-19 pandemic sludge and post-pandemic period sludge samples, a noteworthy reduction in the Chloroflexi and Actinobacteriota phyla at the phylum level was observed. Environmental risk assessment using risk quotients ranged from 168 to 704, indicating that the presence of this antiviral drug posed significant ecological risks to aquatic organisms. The study concluded that WWTPs were releasing antiviral drugs into the environment, thereby posing risks to both the aquatic ecosystem and public health. The results of this study demonstrate the persistence of favipiravir in WWTPs and offer crucial supporting data for further research into the advancement of wastewater treatment technology. Also, this study shows wastewater based monitoring is supplementary and early warning system for determining the occurrence of antiviral drugs.
AB - In recent years especially during COVID-19, the increased usage of antiviral drugs has led to increased interest in monitoring their presence in wastewater worldwide. In this study, it was examined the occurrence, fate and environmental risks of favipiravir which is used for COVID-19 treatment in two wastewater treatment plants (WWTPs) with different treatment processes in Istanbul, Turkey. Favipiravir was measured in WWTPs influent samples, effluent samples and sludge samples with maximum concentrations of 97 μg/L, 64.11 μg/L and 182.47 μg/g, respectively. Favipiravir had removal efficiency below 55 % for both WWTPs. Mass balance analysis showed that favipiravir removal in WWTPs mainly attributed to biodegradation/biotransformation. Statistical analysis revealed a significant correlation between favipiravir concentration and COVID-19 incidence in Istanbul. The microbial distribution analysis indicated that comparison of collected COVID-19 pandemic sludge and post-pandemic period sludge samples, a noteworthy reduction in the Chloroflexi and Actinobacteriota phyla at the phylum level was observed. Environmental risk assessment using risk quotients ranged from 168 to 704, indicating that the presence of this antiviral drug posed significant ecological risks to aquatic organisms. The study concluded that WWTPs were releasing antiviral drugs into the environment, thereby posing risks to both the aquatic ecosystem and public health. The results of this study demonstrate the persistence of favipiravir in WWTPs and offer crucial supporting data for further research into the advancement of wastewater treatment technology. Also, this study shows wastewater based monitoring is supplementary and early warning system for determining the occurrence of antiviral drugs.
KW - COVID-19
KW - Ecotoxicity
KW - Favipiravir
KW - Microbial population change
KW - Wastewater treatment plants
UR - http://www.scopus.com/inward/record.url?scp=85199707863&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.175014
DO - 10.1016/j.scitotenv.2024.175014
M3 - Article
C2 - 39059667
AN - SCOPUS:85199707863
SN - 0048-9697
VL - 949
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 175014
ER -