TY - JOUR
T1 - Local-scale phase velocity estimation using ambient seismic noise
T2 - Comparison between passive seismic interferometry and conventional frequency-wavenumber methods
AU - Karaaslan, Aylin
AU - Kocaoǧlu, Argun
AU - Özalaybey, Serdar
N1 - Publisher Copyright:
© 2021 The Author(s) 2021.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - We present a new processing scheme that uses passive seismic interferometry (PSI) followed by multichannel analysis of surface waves (MASW), which we call the 2-D PSI-MASW method, to obtain Rayleigh wave phase velocity dispersion (PVD) information. In this scheme, we first use the principles of PSI to form multidirectional cross-correlations (CCs) then project the CCs onto a 1-D virtual array and apply the phase-shift transform as in MASW processing. We compare PVD information obtained by this method with those of the conventional beam-power based frequency-wavenumber decomposition (CVFK) method using ambient seismic noise (ASN) data collected by local-scale 2-D arrays deployed at three selected sites in Bursa, Turkey. By analysing the ASN data from these sites, we show that similar multimodal PVD curves can be obtained with the two methods over a broad frequency range (∼2-23 Hz) within the wavenumber resolution and aliasing limits. However, in one of our sites where the 2-D array configuration has a considerable antisymmetry, we show that the 1-D virtual array used in the 2-D PSI-MASW method has a better array response function in terms of wavenumber resolution and suppression of side-lobes leading to superior mode resolution and separation than that of the CVFK method, which shows strong directional variations. Furthermore, unlike the CVFK method, the 2-D PSI-MASW method takes advantage of temporal stacking of CCs ensuring weak but coherent Rayleigh wave signals present in the ASN wavefield to be strengthened and has the potential for better extraction of PVD information. We conclude that by using a 2-D array with spatial coverage providing a wide range of directions and distances, reliable PVD information can be obtained even if the ASN sources are not concentrated in the stationary phase zones. Thus, we suggest that the 2-D PSI-MASW method is highly advantageous for the extraction of reliable PVD information owing to the multidirectional CCs provided by the 2-D array configurations. We also report that using only a single receiver line in the interferometric approach results in biased and/or incomplete PVD information due to the non-isotropic ASN source distribution at all three sites we analysed. In conclusion, our results clearly indicate that the 2-D PSI-MASW method can be used as complementary or alternative to the CVFK method to extract multimodal Rayleigh wave PVD information in local-scale seismological studies.
AB - We present a new processing scheme that uses passive seismic interferometry (PSI) followed by multichannel analysis of surface waves (MASW), which we call the 2-D PSI-MASW method, to obtain Rayleigh wave phase velocity dispersion (PVD) information. In this scheme, we first use the principles of PSI to form multidirectional cross-correlations (CCs) then project the CCs onto a 1-D virtual array and apply the phase-shift transform as in MASW processing. We compare PVD information obtained by this method with those of the conventional beam-power based frequency-wavenumber decomposition (CVFK) method using ambient seismic noise (ASN) data collected by local-scale 2-D arrays deployed at three selected sites in Bursa, Turkey. By analysing the ASN data from these sites, we show that similar multimodal PVD curves can be obtained with the two methods over a broad frequency range (∼2-23 Hz) within the wavenumber resolution and aliasing limits. However, in one of our sites where the 2-D array configuration has a considerable antisymmetry, we show that the 1-D virtual array used in the 2-D PSI-MASW method has a better array response function in terms of wavenumber resolution and suppression of side-lobes leading to superior mode resolution and separation than that of the CVFK method, which shows strong directional variations. Furthermore, unlike the CVFK method, the 2-D PSI-MASW method takes advantage of temporal stacking of CCs ensuring weak but coherent Rayleigh wave signals present in the ASN wavefield to be strengthened and has the potential for better extraction of PVD information. We conclude that by using a 2-D array with spatial coverage providing a wide range of directions and distances, reliable PVD information can be obtained even if the ASN sources are not concentrated in the stationary phase zones. Thus, we suggest that the 2-D PSI-MASW method is highly advantageous for the extraction of reliable PVD information owing to the multidirectional CCs provided by the 2-D array configurations. We also report that using only a single receiver line in the interferometric approach results in biased and/or incomplete PVD information due to the non-isotropic ASN source distribution at all three sites we analysed. In conclusion, our results clearly indicate that the 2-D PSI-MASW method can be used as complementary or alternative to the CVFK method to extract multimodal Rayleigh wave PVD information in local-scale seismological studies.
KW - Seismic interferometry
KW - Seismic noise
KW - Surface waves and free oscillations
UR - http://www.scopus.com/inward/record.url?scp=85115344127&partnerID=8YFLogxK
U2 - 10.1093/gji/ggab080
DO - 10.1093/gji/ggab080
M3 - Article
AN - SCOPUS:85115344127
SN - 0956-540X
VL - 225
SP - 2075
EP - 2096
JO - Geophysical Journal International
JF - Geophysical Journal International
IS - 3
ER -