TY - JOUR
T1 - Leaching of iron and chromium from an indigenous ferro chromium alloy via a rotary evaporator
T2 - optimum conditions determination and kinetic analysis
AU - Gülcan, Mehmet Feryat
AU - Karahan, Billur Deniz
AU - Gürmen, Sebahattin
N1 - Publisher Copyright:
© 2020 The Authors
PY - 2020/11/1
Y1 - 2020/11/1
N2 - In the leaching process of chromium-containing precursor hexavalent chromium may form, which provokes damages to environment and human health. As a solution, leaching the chromium containing precursor with sulphuric acid to get chromium ions into solution without forming hexavalent ions has been proposed. These experiments are mostly carried out at high temperatures to increase the yield, while the detrimental effect of evaporation is still under investigation. In this study, indigenous ferro chromium alloys (>60 wt% Cr) have been leached with sulphuric acid by using a rotary evaporator where no evaporation occurs. The acid molarity, solid:liquid ratio, temperature and rotation rate of the rotary flask have been optimized using Taguchi method to maximize Fe and Cr dissolutions’ efficiencies. Leaching in 5 M sulphuric acid solution with 1:50 solid:liquid ratio, at 90° C, 30 rpm for 150 min could sustain yields around 73% and 56% for Cr and Fe recoveries, respectively. Within the scope of this research, the effects of the mentioned parameters on the leaching efficiency have been also analyzed via the ANOVA method. The most effective parameters for Cr and Fe have been found as temperature and solid:liquid ratio, respectively. Finally, the kinetic has been also studied and universal equations have been successfully tested. −ln(1 − x) = k * tn gives the best fitting result (where n = 0.4 and 0.6 are calculated for Fe and Cr, respectively). These values indicate that the leaching reaction follows the mixed kinetic control model. The activation energies are calculated as 46.12 kJ/mol for Fe and 142.8 kJ/mol for Cr.
AB - In the leaching process of chromium-containing precursor hexavalent chromium may form, which provokes damages to environment and human health. As a solution, leaching the chromium containing precursor with sulphuric acid to get chromium ions into solution without forming hexavalent ions has been proposed. These experiments are mostly carried out at high temperatures to increase the yield, while the detrimental effect of evaporation is still under investigation. In this study, indigenous ferro chromium alloys (>60 wt% Cr) have been leached with sulphuric acid by using a rotary evaporator where no evaporation occurs. The acid molarity, solid:liquid ratio, temperature and rotation rate of the rotary flask have been optimized using Taguchi method to maximize Fe and Cr dissolutions’ efficiencies. Leaching in 5 M sulphuric acid solution with 1:50 solid:liquid ratio, at 90° C, 30 rpm for 150 min could sustain yields around 73% and 56% for Cr and Fe recoveries, respectively. Within the scope of this research, the effects of the mentioned parameters on the leaching efficiency have been also analyzed via the ANOVA method. The most effective parameters for Cr and Fe have been found as temperature and solid:liquid ratio, respectively. Finally, the kinetic has been also studied and universal equations have been successfully tested. −ln(1 − x) = k * tn gives the best fitting result (where n = 0.4 and 0.6 are calculated for Fe and Cr, respectively). These values indicate that the leaching reaction follows the mixed kinetic control model. The activation energies are calculated as 46.12 kJ/mol for Fe and 142.8 kJ/mol for Cr.
KW - Ferro chromium alloy
KW - Kinetic study
KW - Leach
KW - Rotary evaporator
KW - Taguchi method
UR - http://www.scopus.com/inward/record.url?scp=85119052550&partnerID=8YFLogxK
U2 - 10.1016/j.jmrt.2020.09.133
DO - 10.1016/j.jmrt.2020.09.133
M3 - Article
AN - SCOPUS:85119052550
SN - 2238-7854
VL - 9
SP - 14103
EP - 14115
JO - Journal of Materials Research and Technology
JF - Journal of Materials Research and Technology
IS - 6
ER -