TY - JOUR
T1 - Late Carboniferous-Early Permian geodynamic evolution of NW Iran
T2 - Zircon U-Pb ages, Hf isotopes, and whole rock geochemistry of Salmas amphibolites
AU - Hajialioghli, Robab
AU - Moazzen, Mohssen
AU - Saeidi, Sorraya
AU - Mohammadi, Ali
AU - Laurent, Oscar
N1 - Publisher Copyright:
© 2025 Elsevier Ltd
PY - 2025/6
Y1 - 2025/6
N2 - We present new geochronological, petrological, and geochemical data from the amphibolites of the Salmas metamorphic complex in NW Iran. This region is where the Sanandaj-Sirjan magmatic-metamorphic zone, the Urmia-Dokhtar magmatic arc, and the Eastern Anatolian Plateau converge, creating a complex geodynamic context. The amphibolites alternate with gneisses and metamorphosed limestone layers and appear as enclaves of varying sizes within the gneisses. Fine- to medium-grained amphibole and plagioclase, exhibiting a granoblastic texture, are the dominant minerals, indicating basaltic and diabasic protoliths. The amphiboles show simple foliation along lineation, which is occasionally folded. These amphibolites are overlain by Permian to Jurassic sedimentary rocks and, in some places, by Miocene sediments with angular unconformity. Based on whole-rock geochemistry, the amphibolites have relatively high TiO2 (1.23–2.62 wt%) and low MnO (0.18–0.21 wt%) contents, classifying them as ortho-amphibolites. The parental magma was sub-alkaline basaltic with tholeiitic affinities, formed in a within-plate tectonic setting. This is characterized by enrichment in LREE relative to HREE, a lack of Nb, Ta, and Ti anomalies, and the presence of negative Eu and positive Ba anomalies. The ɛHf(t) and 176Hf/177Hf ratios of dated zircons suggest a depleted mantle to lower crust origin for the parental magma of the amphibolites. U-Pb dating of zircon grains yields a mean age of 304.8 Ma, corresponding to Late Carboniferous-Early Permian magmatism related to the opening of the Neotethys Ocean. The thermal effects of Late Cretaceous to Early Cenozoic subduction-related magmatic events are recorded by overgrown metamorphic zircon around original magmatic grains.
AB - We present new geochronological, petrological, and geochemical data from the amphibolites of the Salmas metamorphic complex in NW Iran. This region is where the Sanandaj-Sirjan magmatic-metamorphic zone, the Urmia-Dokhtar magmatic arc, and the Eastern Anatolian Plateau converge, creating a complex geodynamic context. The amphibolites alternate with gneisses and metamorphosed limestone layers and appear as enclaves of varying sizes within the gneisses. Fine- to medium-grained amphibole and plagioclase, exhibiting a granoblastic texture, are the dominant minerals, indicating basaltic and diabasic protoliths. The amphiboles show simple foliation along lineation, which is occasionally folded. These amphibolites are overlain by Permian to Jurassic sedimentary rocks and, in some places, by Miocene sediments with angular unconformity. Based on whole-rock geochemistry, the amphibolites have relatively high TiO2 (1.23–2.62 wt%) and low MnO (0.18–0.21 wt%) contents, classifying them as ortho-amphibolites. The parental magma was sub-alkaline basaltic with tholeiitic affinities, formed in a within-plate tectonic setting. This is characterized by enrichment in LREE relative to HREE, a lack of Nb, Ta, and Ti anomalies, and the presence of negative Eu and positive Ba anomalies. The ɛHf(t) and 176Hf/177Hf ratios of dated zircons suggest a depleted mantle to lower crust origin for the parental magma of the amphibolites. U-Pb dating of zircon grains yields a mean age of 304.8 Ma, corresponding to Late Carboniferous-Early Permian magmatism related to the opening of the Neotethys Ocean. The thermal effects of Late Cretaceous to Early Cenozoic subduction-related magmatic events are recorded by overgrown metamorphic zircon around original magmatic grains.
KW - Amphibolite geochemistry
KW - Neotethys
KW - NW Iran
KW - SE Salmas
KW - Zircon U-Pb-Hf isotopes
UR - http://www.scopus.com/inward/record.url?scp=105001150513&partnerID=8YFLogxK
U2 - 10.1016/j.jog.2025.102089
DO - 10.1016/j.jog.2025.102089
M3 - Article
AN - SCOPUS:105001150513
SN - 0264-3707
VL - 164
JO - Journal of Geodynamics
JF - Journal of Geodynamics
M1 - 102089
ER -