TY - GEN
T1 - Large-scale task/target assignment for UAV fleets using a distributed branch and price optimization
AU - Karaman, Sertac
AU - Inalhan, Gokhan
PY - 2008
Y1 - 2008
N2 - In this work we consider the large-scale distributed task/target assignment problem across a fleet of autonomous UAVs. By using delayed column generation approach on the most primitive non-convex supply-demand formulation, a computationally tractable distributed coordination structure (i.e. a market created by the UAV fleet for tasks/targets) is exploited. This particular structure is solved via a fleet-optimal dual simplex ascent in which each UAV updates its respective flight plan costs with a linear update of way-point task values as evaluated by the market. We show synchronized and asynchronous distributed implementations of this approximation algorithm for dynamically changing scenarios with random pop-up targets. The tests performed on an in-house built network mission simulator provides numerical verification of the algorithm on a) bounded polynomial-time computational complexity and b) hard real-time performance for problem sizes on the order of hundred waypoints per UAV.
AB - In this work we consider the large-scale distributed task/target assignment problem across a fleet of autonomous UAVs. By using delayed column generation approach on the most primitive non-convex supply-demand formulation, a computationally tractable distributed coordination structure (i.e. a market created by the UAV fleet for tasks/targets) is exploited. This particular structure is solved via a fleet-optimal dual simplex ascent in which each UAV updates its respective flight plan costs with a linear update of way-point task values as evaluated by the market. We show synchronized and asynchronous distributed implementations of this approximation algorithm for dynamically changing scenarios with random pop-up targets. The tests performed on an in-house built network mission simulator provides numerical verification of the algorithm on a) bounded polynomial-time computational complexity and b) hard real-time performance for problem sizes on the order of hundred waypoints per UAV.
KW - Aerospace applications
KW - Decentralization
KW - Large scale optimization problems
UR - http://www.scopus.com/inward/record.url?scp=79961018815&partnerID=8YFLogxK
U2 - 10.3182/20080706-5-KR-1001.2401
DO - 10.3182/20080706-5-KR-1001.2401
M3 - Conference contribution
AN - SCOPUS:79961018815
SN - 9783902661005
T3 - IFAC Proceedings Volumes (IFAC-PapersOnline)
BT - Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
T2 - 17th World Congress, International Federation of Automatic Control, IFAC
Y2 - 6 July 2008 through 11 July 2008
ER -