TY - JOUR
T1 - Lactic Acid Bacterial Culture Selection for Orange Pomace Fermentation and Its Potential Use in Functional Orange Juice
AU - Dikmetas, Dilara Nur
AU - Nemli, Elifsu
AU - Karbancioglu-Guler, Funda
AU - Apak, Resat
AU - Bener, Mustafa
AU - Zhang, Wenbo
AU - Jia, Nan
AU - Zhao, Chao
AU - Tomas, Merve
AU - Capanoglu, Esra
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025/3/25
Y1 - 2025/3/25
N2 - The main goal of this study is to improve the bioactivity of citrus pomace by subjecting it to solid-state fermentation by Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus plantarum over varying periods of time. The viability of Lactobacillus, as well as the total phenolic content (TPC) and total antioxidant capacity (TAC) values of orange pomace (OP), varied depending on the Lactobacillus species and fermentation period. The incorporation of pomace into orange juice samples at a ratio of 5% considerably enhanced the viability of probiotics. The TPC and TAC of orange juice samples were reduced after fermentation. The addition of orange pomace to orange juice significantly increased prostaglandin H2 and improved antioxidant capacity with more pronounced effects at increased pomace concentrations. After postfermentation with L. plantarum, key bioactive compounds such as corynoxeine and phenolics were upregulated, while picroside III and allocryptopine levels were decreased. On the other hand, metabolomics analysis revealed significant changes after fermentation in amino acid, sphingolipid, and fatty acid metabolism and the synthesis of secondary metabolites improving the nutritional profile and bioactivity of fermented orange juice. These findings highlight the potential of pomace addition and fermentation to improve the health benefits and quality of orange juice products. Therefore, the combined use of fermentation and fortification with OP could be a promising approach to creating new functional foods and promoting the use of edible food waste and byproducts.
AB - The main goal of this study is to improve the bioactivity of citrus pomace by subjecting it to solid-state fermentation by Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus plantarum over varying periods of time. The viability of Lactobacillus, as well as the total phenolic content (TPC) and total antioxidant capacity (TAC) values of orange pomace (OP), varied depending on the Lactobacillus species and fermentation period. The incorporation of pomace into orange juice samples at a ratio of 5% considerably enhanced the viability of probiotics. The TPC and TAC of orange juice samples were reduced after fermentation. The addition of orange pomace to orange juice significantly increased prostaglandin H2 and improved antioxidant capacity with more pronounced effects at increased pomace concentrations. After postfermentation with L. plantarum, key bioactive compounds such as corynoxeine and phenolics were upregulated, while picroside III and allocryptopine levels were decreased. On the other hand, metabolomics analysis revealed significant changes after fermentation in amino acid, sphingolipid, and fatty acid metabolism and the synthesis of secondary metabolites improving the nutritional profile and bioactivity of fermented orange juice. These findings highlight the potential of pomace addition and fermentation to improve the health benefits and quality of orange juice products. Therefore, the combined use of fermentation and fortification with OP could be a promising approach to creating new functional foods and promoting the use of edible food waste and byproducts.
UR - http://www.scopus.com/inward/record.url?scp=105001076755&partnerID=8YFLogxK
U2 - 10.1021/acsomega.4c09704
DO - 10.1021/acsomega.4c09704
M3 - Article
AN - SCOPUS:105001076755
SN - 2470-1343
VL - 10
SP - 11038
EP - 11053
JO - ACS Omega
JF - ACS Omega
IS - 11
ER -