Investigation of the Performance Characteristics of the Angle-based Proportional Navigation Guidance Law

Bülent Özkan*, Mehmet Turan Söylemez

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Guidance commands generated by the proportional navigation guidance (PNG) law which constitutes the most popular one among the guidance laws applied on the guidance munition fired against predetermined targets are in the form of linear acceleration or angular speed as dictated by the relevant engagement geometry. As a result of the studies in which notable linear acceleration- and angle-based guidance laws are compared, it is seen the lateral acceleration values obtained with the PNG law occur in a lower level than the results of the angle-based guidance laws. However, the angle-based guidance laws lead to lower final miss distances. In this study, the PNG law is so adapted that it yields angle-based guidance commands and then it is applied upon a short-range air-to-surface missile against a maneuvering surface target as well as the velocity pursuit guidance law that is nothing but a version of PNG law, linear homing guidance law, and body pursuit guidance law. After the computer simulations, it is observed that the angle-based PNG law produces smaller final miss distances compared to its original form. The resulting lateral accelerations are in admissible levels. Also, the engagement duration values with the target happen to be almost the same.

Original languageEnglish
Title of host publicationIFAC-PapersOnLine
EditorsHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
PublisherElsevier B.V.
Pages7020-7025
Number of pages6
Edition2
ISBN (Electronic)9781713872344
DOIs
Publication statusPublished - 1 Jul 2023
Event22nd IFAC World Congress - Yokohama, Japan
Duration: 9 Jul 202314 Jul 2023

Publication series

NameIFAC-PapersOnLine
Number2
Volume56
ISSN (Electronic)2405-8963

Conference

Conference22nd IFAC World Congress
Country/TerritoryJapan
CityYokohama
Period9/07/2314/07/23

Bibliographical note

Publisher Copyright:
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords

  • Guidance
  • acceleration-based guidance laws
  • angle-based guidance laws
  • guided munition
  • proportional navigation guidance

Fingerprint

Dive into the research topics of 'Investigation of the Performance Characteristics of the Angle-based Proportional Navigation Guidance Law'. Together they form a unique fingerprint.

Cite this