Interacting two-component fluid models with varying EoS parameter

M. Khurshudyan, B. Pourhassan*, E. O. Kahya

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)


In this paper, we consider Universe filled with two-component fluid. We study two different models. In the first model we assume barotropic fluid with the linear equation of state (EoS) as the first component of total fluid. In the second model we assume van der Waals gas as the first component of total fluid. In both models, the second component assumed generalized ghost dark energy. We consider also interaction between components and discuss, numerically, cosmological quantities for two different parametrizations of EoS which varies with time. We consider this as a toy model of our Universe. We fix parameters of the model by using generalized second law of thermodynamics. Comparing our results with some observational data suggests interacting barotropic fluid with EoS parameter ω(t)=ω0cos(tH)+ω1t H/H and generalized ghost dark energy as an appropriate model to describe our Universe.

Original languageEnglish
Article number1450061
JournalInternational Journal of Geometric Methods in Modern Physics
Issue number6
Publication statusPublished - Jul 2014


  • cosmology
  • Dark energy
  • early Universe


Dive into the research topics of 'Interacting two-component fluid models with varying EoS parameter'. Together they form a unique fingerprint.

Cite this