Intelligent Systems Utilization in Recommender Systems: A Reinforcement Learning Approach

Ibrahim Yazici, Emre Ari*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recommender systems (RS) have been gaining momentum with the advent of digitalization of our daily lives, accordingly, companies seek to attract most customers in this environment. One way of attracting more customers by advertisements is through online ads that make use of click-through rates (CTR) for the ads to build efficient RSS. For the RSS, frequently utilized methods are collaborative filtering (CF), content-based filtering (CBF) along with one of the traditional reinforcement learning approaches. The objective of this paper is to determine the best online ad among multiple advertisements to show the customers by reinforcement learning (RL). By treating the problem in multi-armed bandits, we modeled the problem with Bernoulli distribution by means of obtained CTRs. The best ad was tried to be chosen by the Bernoulli bandit with three settings; A/B/n testing, epsilon greedy, and Upper Confidence Bound (UCB) methods. The results show the explorations’ contribution (with UCB and epsilon greedy) to the performance of the methods. Each method chose the same ad to show for online ads. UCB found the most preferable ad with a CTR rate of around 27.01%. It was followed by the epsilon greedy strategy with a CTR of around 25%. All the methods used determined the same ad alternative as the best according to the results obtained.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Systems - Digital Acceleration and The New Normal - Proceedings of the INFUS 2022 Conference, Volume 2
EditorsCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, A. Cagri Tolga, Selcuk Cebi
PublisherSpringer Science and Business Media Deutschland GmbH
Pages124-130
Number of pages7
ISBN (Print)9783031091759
DOIs
Publication statusPublished - 2022
EventInternational Conference on Intelligent and Fuzzy Systems, INFUS 2022 - Izmir, Turkey
Duration: 19 Jul 202221 Jul 2022

Publication series

NameLecture Notes in Networks and Systems
Volume505 LNNS
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceInternational Conference on Intelligent and Fuzzy Systems, INFUS 2022
Country/TerritoryTurkey
CityIzmir
Period19/07/2221/07/22

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Recommender systems (RS)
  • Reinforcement learning (RL)
  • Upper Confidence Bound (UCB)

Fingerprint

Dive into the research topics of 'Intelligent Systems Utilization in Recommender Systems: A Reinforcement Learning Approach'. Together they form a unique fingerprint.

Cite this