Intelligent Network Monitoring System Using an ISP Central Points of Presence

Yousef Alkhanafseh, Mahsun Altın*, Altan Çakır, Esra Karabıyık, Ekrem Yıldız, Sencan Akyüz

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The proliferation of both internet usage and users have been remarkably increased due to certain situations that influenced face-to-face communications, which in turn have created high pressure on Internet Service Providers (ISPs). This research mainly aims to boost ISP services by conducting near real-time analysis for customer’s behavior movements based on their score of central Points of Presence (POP). In addition, this study focuses on establishing special Recurrent Artificial Intelligence (RNN) architecture to make daily sales predictions based on various central POPs. The process utilizes different RNN architectures, Long Short Time Memory (LSTM) and Gated Recurrent Unit (GRU), and compares them in order to make smart scoring measurements for customers’ high-dimensional data. As a result, it can be concluded that LSTM architecture has achieved much better Mean squared Error (MSE) than GRU architecture. LSTM outperforms GRU in forecasting less sensitive outliers, with an average Mean Absolute Error (MAE) of 1.354 for LSTM and 1.554 for GRU. Additionally, LSTM performs better in forecasting outliers, with an average MSE of 3.592 compared to GRU’s average of 4.8. Thereafter, the obtained results are merged over private Application Programming Interface (API) and monitored over smart reports. Eventually, the outcomes of this research can be summarized in providing several benefits for customers such as increasing internet performance, reaching promised speed, and shortening activation times. ISP-related benefits such as gaining reputation, promoting sales, and reducing customers’ negative support tickets can be achieved as well.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
EditorsCengiz Kahraman, Irem Ucal Sari, Basar Oztaysi, Sezi Cevik Onar, Selcuk Cebi, A. Çağrı Tolga
PublisherSpringer Science and Business Media Deutschland GmbH
Pages246-254
Number of pages9
ISBN (Print)9783031397769
DOIs
Publication statusPublished - 2023
Externally publishedYes
EventIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference - Istanbul, Turkey
Duration: 22 Aug 202324 Aug 2023

Publication series

NameLecture Notes in Networks and Systems
Volume759 LNNS
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
Country/TerritoryTurkey
CityIstanbul
Period22/08/2324/08/23

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Data Analysis
  • Internet
  • Network Monitoring
  • POP Scoring
  • Smart Reports
  • Telecommunication

Fingerprint

Dive into the research topics of 'Intelligent Network Monitoring System Using an ISP Central Points of Presence'. Together they form a unique fingerprint.

Cite this