Abstract
Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils.
Original language | English |
---|---|
Pages (from-to) | 389-397 |
Number of pages | 9 |
Journal | Thin Solid Films |
Volume | 562 |
DOIs | |
Publication status | Published - 1 Jul 2014 |
Externally published | Yes |
Funding
The authors would like to thank the Nissan Motor Company for providing the materials support for this project. Special thanks are also in order for Dr. Masahiro Kawagichi (Tokyo Metropolitan Industrial Technology) for his valuable assistance in the XPS measurements. The corresponding author would also like to convey thanks to the Turkish Ministry of National Education for providing financial support for his graduate study.
Funders | Funder number |
---|---|
Turkish Ministry of National Education |
Keywords
- DLC
- Friction
- Lubrication
- Wear
- ZnDTP