Abstract
This study presents numerical investigations of turbulent premixed bluff-body stabilized flame by emphasizing the influence of pressure gradient on flame-vortex interaction and flame stability for lean combustion applications. Large eddy simulations of four different geometrical configurations, diffuser 3?, diffuser 1.5?, nominal, and nozzle that resulted in mild to strong pressure gradients are presented. Numerical investigations allowed determining the effects of geometry-induced pressure gradient on the flame structure, development of the flame-front vorticity and turbulent structures and flame stabilization. It is shown that the pressure gradient plays a key role for the spatial and temporal development of the flame front vorticity and baroclinic torque. The flow deceleration in diffuser geometries suppresses the flame-induced vorticity mechanisms, which in turn lead to large wrinkle forms of the flame and may lead to local extinctions along the flame front. The favorable pressure gradient in the nozzle geometry, on the contrary, increases the baroclinic torque that restrains the development of the shear layer vorticity and hence prevents local extinctions.
Original language | English |
---|---|
Title of host publication | Combustion, Fuels, and Emissions |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791886007 |
DOIs | |
Publication status | Published - 2022 |
Event | ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 - Rotterdam, Netherlands Duration: 13 Jun 2022 → 17 Jun 2022 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 3-B |
Conference
Conference | ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 |
---|---|
Country/Territory | Netherlands |
City | Rotterdam |
Period | 13/06/22 → 17/06/22 |
Bibliographical note
Publisher Copyright:Copyright © 2022 by ASME.