Abstract
Reconfigurable intelligent surface (RIS)-empowered communications represent exciting prospects as one of the promising technologies capable of meeting the requirements of the sixth generation networks such as low-latency, reliability, and dense connectivity. However, validation of test cases and real-world experiments of RISs are imperative to their practical viability. To this end, this paper presents a physical demonstration of an RIS-assisted communication system in an indoor environment in order to enhance the coverage by increasing the received signal power. We first analyze the performance of the RIS-assisted system for a set of different locations of the receiver and observe around 10 dB improvement in the received signal power by careful RIS phase adjustments. Then, we employ an efficient codebook design for RIS configurations to adjust the RIS states on the move without feedback channels. We also investigate the impact of an efficient grouping of RIS elements, whose objective is to reduce the training time needed to find the optimal RIS configuration. In our extensive experimental measurements, we demonstrate that with the proposed grouping scheme, training time is reduced from one-half to one-eighth by sacrificing only a few dBs in received signal power.
Original language | English |
---|---|
Title of host publication | ICC 2023 - IEEE International Conference on Communications |
Subtitle of host publication | Sustainable Communications for Renaissance |
Editors | Michele Zorzi, Meixia Tao, Walid Saad |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 485-490 |
Number of pages | 6 |
ISBN (Electronic) | 9781538674628 |
DOIs | |
Publication status | Published - 2023 |
Externally published | Yes |
Event | 2023 IEEE International Conference on Communications, ICC 2023 - Rome, Italy Duration: 28 May 2023 → 1 Jun 2023 |
Publication series
Name | IEEE International Conference on Communications |
---|---|
Volume | 2023-May |
ISSN (Print) | 1550-3607 |
Conference
Conference | 2023 IEEE International Conference on Communications, ICC 2023 |
---|---|
Country/Territory | Italy |
City | Rome |
Period | 28/05/23 → 1/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Funding
ACKNOWLEDGMENT The authors would like to thank the Greenerwave team for their technical support with the RIS prototype. The statements made herein are solely the responsibility of the authors. We thank to StorAIge project that has received funding from the KDT Joint Undertaking (JU) under Grant Agreement No. 101007321. The JU receives support from the European Union’s Horizon 2020 research and innovation programme in France, Belgium, Czech Republic, Germany, Italy, Sweden, Switzerland, Türkiye, and National Authority TÜB˙TAK with project ID 121N350. The work of E. Basar and Y. Gevez is also supported by TÜB˙TAK under grant 120E401.
Funders | Funder number |
---|---|
National Authority TÜB˙TAK | 120E401, 121N350 |
Horizon 2020 Framework Programme |
Keywords
- 6G
- Reconfigurable intelligent surface
- smart radio environment
- software-defined radio