Improvement of sound absorption coefficient of glass fiber fabric epoxy composite inherently without deterioration of main mechanical properties

Ilkay Ozsev Yuksek, Nuray Ucar

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this study, the sound absorption behaviour of glass fiber fabric epoxy composite (GFFEC) is aimed to be increased without reduction in main mechanical properties and density. The effect of polystyrene (PS) and silica aerogel (SA) on sound absorption, density, tensile, and flexural properties along with drop impact performance of GFFEC were investigated. Both PS and SA was added into epoxy resin. Vacuum infusion method was applied to manufacture GFFEC’s. Both PS and SA addition resulted with enhanced sound absorption coefficient (SAC) of GFFEC. Breaking stress and elongation enhanced with either PS or SA addition. Increased absorbed energies during drop impact tests were observed in both PS and SA incorporated GFFEC’s compared to reference GFFEC. Density of reference composite (lightness) has improved by addition of SA and PS. Additionally, use of SA improved the SAC of GFFEC. On the other hand, maximum SAC was achieved with use of PS rather than SA.

Original languageEnglish
JournalPolymers and Polymer Composites
Volume30
DOIs
Publication statusPublished - 4 Feb 2022

Bibliographical note

Publisher Copyright:
© The Author(s) 2022.

Keywords

  • glass fiber epoxy composite
  • Polystyrene
  • silica aerogel
  • sound absorption coefficient

Fingerprint

Dive into the research topics of 'Improvement of sound absorption coefficient of glass fiber fabric epoxy composite inherently without deterioration of main mechanical properties'. Together they form a unique fingerprint.

Cite this