TY - JOUR
T1 - Improved seasonal climate forecasts for the Caribbean region using the Florida State University Synthetic Superensemble
AU - Ross, R. S.
AU - Chakraborty, A.
AU - Chen, A.
AU - Stefanova, L.
AU - Sirdas, S.
AU - Krishnamurti, T. N.
PY - 2007/12
Y1 - 2007/12
N2 - Climate variations in the Caribbean, largely manifest in rainfall activity, have important consequences for the large-scale water budget, natural vegetation, and land use in the region. The wet and dry seasons will be defined, and the important roles played by the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) in modulating the rainfall during these seasons will be discussed. The seasonal climate forecasts in this paper are made by 13 state of the art coupled atmosphere-ocean general circulation models (CGCMs) and by the Florida State University Synthetic Superensemble (FSUSSE), whose forecasts are obtained by a weighted combination of the individual CGCM forecasts based on a training period. The success of the models in simulating the observed 1989-2001 climatology of the various forecast parameters will be examined and linked to the models' success in predicting the seasonal climate for individual years. Seasonal forecasts will be examined for precipitation, sea-surface temperature (SST), 2-meter air temperature, and 850 Pa u - and v -wind components during the period 1989-2001. Evaluation metrics include root mean square (RMS) error and Brier skill score. It will be shown that the FSUSSE is superior to the individual CGCMs and their ensemble mean both in simulating the 1989-2001 climatology for the various parameters and in predicting the seasonal climate of the various parameters for individual years. The seasonal climate forecasts of the FSUSSE and of the ensemble mean of the 13 state of the art CGCMs will be evaluated for years (during the period 1989-2001) that have particular ENSO and NAO signals that are known to influence Caribbean weather, particularly the rainfall. It will be shown that the FSUSSE provides superior forecasts of rainfall, SST, 2-meter air temperature, and 850 hPa u - and v -wind components during dry summers that are modulated by negative SOI and/or positive NAO indices. Such summers have become a feature of a twenty-year pattern of drought in the Caribbean region. The results presented in this paper will show that the FSUSSE is a valuable tool for forecasting rainfall and other atmospheric and oceanic variables during such periods of drought.
AB - Climate variations in the Caribbean, largely manifest in rainfall activity, have important consequences for the large-scale water budget, natural vegetation, and land use in the region. The wet and dry seasons will be defined, and the important roles played by the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) in modulating the rainfall during these seasons will be discussed. The seasonal climate forecasts in this paper are made by 13 state of the art coupled atmosphere-ocean general circulation models (CGCMs) and by the Florida State University Synthetic Superensemble (FSUSSE), whose forecasts are obtained by a weighted combination of the individual CGCM forecasts based on a training period. The success of the models in simulating the observed 1989-2001 climatology of the various forecast parameters will be examined and linked to the models' success in predicting the seasonal climate for individual years. Seasonal forecasts will be examined for precipitation, sea-surface temperature (SST), 2-meter air temperature, and 850 Pa u - and v -wind components during the period 1989-2001. Evaluation metrics include root mean square (RMS) error and Brier skill score. It will be shown that the FSUSSE is superior to the individual CGCMs and their ensemble mean both in simulating the 1989-2001 climatology for the various parameters and in predicting the seasonal climate of the various parameters for individual years. The seasonal climate forecasts of the FSUSSE and of the ensemble mean of the 13 state of the art CGCMs will be evaluated for years (during the period 1989-2001) that have particular ENSO and NAO signals that are known to influence Caribbean weather, particularly the rainfall. It will be shown that the FSUSSE provides superior forecasts of rainfall, SST, 2-meter air temperature, and 850 hPa u - and v -wind components during dry summers that are modulated by negative SOI and/or positive NAO indices. Such summers have become a feature of a twenty-year pattern of drought in the Caribbean region. The results presented in this paper will show that the FSUSSE is a valuable tool for forecasting rainfall and other atmospheric and oceanic variables during such periods of drought.
UR - http://www.scopus.com/inward/record.url?scp=37049022600&partnerID=8YFLogxK
U2 - 10.1007/s00703-006-0234-3
DO - 10.1007/s00703-006-0234-3
M3 - Article
AN - SCOPUS:37049022600
SN - 0177-7971
VL - 98
SP - 137
EP - 174
JO - Meteorology and Atmospheric Physics
JF - Meteorology and Atmospheric Physics
IS - 3-4
ER -