Implementation of a microfluidic conductivity sensor - A potential sweat electrolyte sensing system for dehydration detection

Gengchen Liu, Kyle Smith, Tolga Kaya*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Citations (Scopus)

Abstract

As dehydration continues to plague performance athletes and soldiers, the need for improved dehydration detection is clear. We propose the use of a conductometric sensor as the foundation of a sweat-sensing patch to address this need. The conductometric sensor evaluates the conductivity of solutions with varying sodium concentrations. A lithographic process was used to fabricate a Polydimethylsiloxane (PDMS) microfluidic channel through which solution was flowed. The ionization of the solution that occurs when a voltage is applied results in an effective resistance across the channel. The measured resistance therefore, reflects the ionization of the solution and the corresponding sodium concentration. The potential application of the conductometric sensor in a sweat-sensing patch requires compatibility with a microcontroller and Bluetooth module. Thus, a circuit interface was created. A voltage divider was utilized to convert the output resistance of the sensor to a voltage that could be input into a microcontroller. An AC voltage signal with a frequency of 10 kHz was used as the source voltage of the voltage divider to minimize the faradaic impedance and the double layer effect of the ionized solution. Tests have revealed that the conductometric is capable of precisely measuring the conductivity of a sodium solution. The conductometric sensor will be applied to a sweat sensing patch through future work involving studying the link between sodium concentration in sweat and an individual's dehydration level, developing a sweat-collection method, and developing a method of consideration for the other ions contained in sweat.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1678-1681
Number of pages4
ISBN (Electronic)9781424479290
DOIs
Publication statusPublished - 2 Nov 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 26 Aug 201430 Aug 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period26/08/1430/08/14

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Keywords

  • Conductivity
  • Conductometric Sensor
  • Sodium Concentration Measurement
  • Wireless Data Transmission

Fingerprint

Dive into the research topics of 'Implementation of a microfluidic conductivity sensor - A potential sweat electrolyte sensing system for dehydration detection'. Together they form a unique fingerprint.

Cite this