Abstract
Facial emotions play a critical part in daily life and understanding and analyzing emotions are of great importance in terms of human-computer interaction. Although facial expressions between children and adults differ, many face recognition systems use models that are exclusively trained on adult data. Children with hearing impaired (HI) have hardship in social life due to differences in expressing emotions. Therefore, the facial expressions recognition of children with HI is a challenging problem. This study aims to develop a high performance emotion classification system for children with HI. For training Convolutional Neural Networks (CNN) from scratch, a large amount of data is required, but the children's dataset is limited. Firstly, fine-tuning the model with pre-trained CNN via transfer learning is discussed as a method for the classification of children's emotions. As a result of the experiments, the most accurate result was obtained by fine-tuning the dataset of children with 3 emotion labels with the trained-model of adults with 8 emotion labels.
Translated title of the contribution | Facial Expressions Detection of Children with Hearing Impairment |
---|---|
Original language | Turkish |
Title of host publication | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665450928 |
DOIs | |
Publication status | Published - 2022 |
Event | 30th Signal Processing and Communications Applications Conference, SIU 2022 - Safranbolu, Turkey Duration: 15 May 2022 → 18 May 2022 |
Publication series
Name | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|
Conference
Conference | 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|---|
Country/Territory | Turkey |
City | Safranbolu |
Period | 15/05/22 → 18/05/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.