Abstract
In this study, the hydrothermal gasification of biomass in supercritical water is investigated. The work is of peculiar value since a real biomass, olive mill wastewater (OMW), is used instead of model biomass compounds. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. The high content of organics makes OMW a desirable biomass candidate as an energy source. The hydrothermal gasification experiments for OMW were conducted with five different reaction temperatures (400, 450, 500, 550 and 600 °C) and five different reaction times (30, 60, 90, 120 and 150 s), under a pressure of 25 MPa. The gaseous products are mainly composed of hydrogen, carbon dioxide, carbon monoxide and C1-C4 hydrocarbons, such as methane, ethane, propane and propylene. Maximum amount of the gas product obtained is 7.71 mL per mL OMW at a reaction temperature of 550 °C, with a reaction time of 30 s. The gas product composition is 9.23% for hydrogen, 34.84% for methane, 4.04% for ethane, 0.84% for propane, 0.83% for propylene, 49.34% for carbon dioxide, and 0.88% for minor components such as n-butane, i-butane, 1-butene, i-butene, t-2-butene, 1,3-butadiene and nitrogen at this reaction conditions.
Original language | English |
---|---|
Pages (from-to) | 50-57 |
Number of pages | 8 |
Journal | Journal of Supercritical Fluids |
Volume | 57 |
Issue number | 1 |
DOIs | |
Publication status | Published - May 2011 |
Externally published | Yes |
Keywords
- Biofuels
- Hydrothermal gasification
- Olive mill wastewater
- Supercritical water