Hybrid SVM and SVSA method for classification of remote sensing images

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

A linear support vector machine (LSVM) is based on determining an optimum hyperplane that separates the data into two classes with the maximum margin. The LSVM typically has high classification accuracy for linearly separable data. However, for nonlinearly separable data, it usually has poor performance. For this type of data, the Support Vector Selection and Adaptation (SVSA) method was developed, but its classification accuracy is not very high for linearly separable data in comparison to LSVM. In this paper, we present a new classifier that combines the LSVM with the SVSA, to be called the Hybrid SVM and SVSA method (HSVSA), for classification of both linearly and nonlinearly separable data and remote sensing images as well. The experimental results show that the HSVSA has higher classification accuracy than the traditional LSVM, the nonlinear SVM (NSVM) with the radial basis kernel, and the previous SVSA.

Original languageEnglish
Title of host publication2010 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2828-2831
Number of pages4
ISBN (Print)9781424495658, 9781424495665
DOIs
Publication statusPublished - 2010
Event2010 30th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2010 - Honolulu, United States
Duration: 25 Jul 201030 Jul 2010

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference2010 30th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2010
Country/TerritoryUnited States
CityHonolulu
Period25/07/1030/07/10

Keywords

  • Hybrid SVM and SVSA
  • Support vector machines
  • Support Vector Selection and Adaptation

Fingerprint

Dive into the research topics of 'Hybrid SVM and SVSA method for classification of remote sensing images'. Together they form a unique fingerprint.

Cite this