TY - JOUR
T1 - How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?
AU - Goren, Aysegül Yagmur
AU - Kobya, Mehmet
AU - Khataee, Alireza
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/2/20
Y1 - 2022/2/20
N2 - Arsenic (As) occurrence in water resources has become one of the most critical environmental problems worldwide. The detrimental health impacts on humans have been reported due to the consumption of As-contaminated groundwater resources. Consumption of As-containing water over the long term can cause arsenicosis and chronic effects on human health due to its toxicity. Several treatment processes are available for As removals such as coagulation, ion exchange, adsorption, and membrane technologies but they have various major drawbacks. In the present work, therefore, an aerated electrocoagulation (EC) system with aluminum anodes was operated for simultaneous arsenate (As(V)) and arsenite (As(III)) removal to overcome the disadvantages of other processes such as, sludge formation, difficulties in operation, high operating costs, high energy consumption, and the requirement of pre-treatment process and to enhance the conventional EC process. The combined effects of the applied current (0.075–0.3 A), aeration rate (0–6 L/min), pH (6.5–8.5), and As speciation (As(V)-As(III)) were studied on As removal efficiency. The findings revealed that As removal mostly depended on the airflow rate and the applied current in the EC system. The highest As removal efficiency (99.1%) was obtained at an airflow rate of 6 L/min, a pH of 6.5, an initial As (V) concentration of 200 μg/L, and a current of 0.3 A, with an energy consumption of 2.85 kWh/m3 and an operating cost of 0.66 $/m3. The human health risk assessment of treated water was also examined to understand the performance of the EC system. At most of the experimental runs, the chronic toxic risk (CTR) and carcinogenic risk (CR) of As were within the permissible limits except for an airflow rate of 0–2 L/min, an initial pH of 8.5, and a current of 0.075–0.15 A for high initial As (III) concentrations. Overall, the As removal performance and groundwater risk assessment show that the EC process is a promising option for industrial applications.
AB - Arsenic (As) occurrence in water resources has become one of the most critical environmental problems worldwide. The detrimental health impacts on humans have been reported due to the consumption of As-contaminated groundwater resources. Consumption of As-containing water over the long term can cause arsenicosis and chronic effects on human health due to its toxicity. Several treatment processes are available for As removals such as coagulation, ion exchange, adsorption, and membrane technologies but they have various major drawbacks. In the present work, therefore, an aerated electrocoagulation (EC) system with aluminum anodes was operated for simultaneous arsenate (As(V)) and arsenite (As(III)) removal to overcome the disadvantages of other processes such as, sludge formation, difficulties in operation, high operating costs, high energy consumption, and the requirement of pre-treatment process and to enhance the conventional EC process. The combined effects of the applied current (0.075–0.3 A), aeration rate (0–6 L/min), pH (6.5–8.5), and As speciation (As(V)-As(III)) were studied on As removal efficiency. The findings revealed that As removal mostly depended on the airflow rate and the applied current in the EC system. The highest As removal efficiency (99.1%) was obtained at an airflow rate of 6 L/min, a pH of 6.5, an initial As (V) concentration of 200 μg/L, and a current of 0.3 A, with an energy consumption of 2.85 kWh/m3 and an operating cost of 0.66 $/m3. The human health risk assessment of treated water was also examined to understand the performance of the EC system. At most of the experimental runs, the chronic toxic risk (CTR) and carcinogenic risk (CR) of As were within the permissible limits except for an airflow rate of 0–2 L/min, an initial pH of 8.5, and a current of 0.075–0.15 A for high initial As (III) concentrations. Overall, the As removal performance and groundwater risk assessment show that the EC process is a promising option for industrial applications.
KW - Al balls
KW - Arsenate
KW - Arsenite
KW - Electrocoagulation
KW - Groundwater
KW - Health risk
UR - http://www.scopus.com/inward/record.url?scp=85120845879&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.152135
DO - 10.1016/j.scitotenv.2021.152135
M3 - Article
C2 - 34864021
AN - SCOPUS:85120845879
SN - 0048-9697
VL - 808
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 152135
ER -