Hotel Sales Forecasting with LSTM and N-BEATS

Suayb Talha Ozcelik, Faik Boray Tek, Erdal Sekerci

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Time series forecasting aims to model the change in data points over time. It is applicable in many areas, such as energy consumption, solid waste generation, economic indicators (inflation, currency), global warming (heat, water level), and hotel sales forecasting. This paper focuses on hotel sales forecasting with machine learning and deep learning solutions. A simple forecast solution is to repeat the last observation (Naive method) or the average of the past observations (Average method). More sophisticated solutions have been developed over the years, such as machine learning methods that have linear (Linear Regression, ARIMA) and nonlinear (Polynomial Regression and Support Vector Regression) methods. Different kinds of neural networks are developed and used in time series forecasting problems, and two of the successful ones are Recurrent Neural Networks and N-BEATS. This paper presents a forecasting analysis of hotel sales from Türkiye and Cyprus. We showed that N-BEATS is a solid choice against LSTM, especially in long sequences. Moreover, N-BEATS has slightly better inference time results in long sequences, but LSTM is faster in short sequences.

Original languageEnglish
Title of host publicationUBMK 2023 - Proceedings
Subtitle of host publication8th International Conference on Computer Science and Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages584-589
Number of pages6
ISBN (Electronic)9798350340815
DOIs
Publication statusPublished - 2023
Event8th International Conference on Computer Science and Engineering, UBMK 2023 - Burdur, Turkey
Duration: 13 Sept 202315 Sept 2023

Publication series

NameUBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering

Conference

Conference8th International Conference on Computer Science and Engineering, UBMK 2023
Country/TerritoryTurkey
CityBurdur
Period13/09/2315/09/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • demand forecasting
  • LSTM
  • N-BEATS
  • RNN
  • time-series
  • tourism

Fingerprint

Dive into the research topics of 'Hotel Sales Forecasting with LSTM and N-BEATS'. Together they form a unique fingerprint.

Cite this