Hopf-dihedral (co)homology and L-theory

Atabey Kaygun, Serkan Sütlü

Research output: Contribution to journalArticlepeer-review

Abstract

We develop an appropriate dihedral extension of the Connes-Moscovici characteristic map for Hopf ∗-algebras. We then observe that one can use this extension together with the dihedral Chern character to detect non-trivial L-theory classes of a ∗-algebra that carry a Hopf symmetry over a Hopf ∗-algebra. Using our machinery we detect a previously unknown L-class of the standard Podles sphere.

Original languageEnglish
Pages (from-to)69-106
Number of pages38
JournalJournal of Noncommutative Geometry
Volume12
Issue number1
DOIs
Publication statusPublished - 2018

Bibliographical note

Publisher Copyright:
© European Mathematical Society.

Keywords

  • Chern character
  • Hopf-dihedral cohomology
  • Hopf∗-algebras
  • L-theory

Fingerprint

Dive into the research topics of 'Hopf-dihedral (co)homology and L-theory'. Together they form a unique fingerprint.

Cite this